C13 Wear characteristics of grinding wheel on spiral ultrasonic assisted grinding of sapphire wafer : Topographic features of vitrified diamond wheel

2014 ◽  
Vol 2014.10 (0) ◽  
pp. 155-156
Author(s):  
Masakazu Fujimoto ◽  
Yongbo Wu ◽  
Mitsuyoshi Nomura ◽  
Takuya Miura ◽  
Zhiqiang Liang
2014 ◽  
Vol 8 (4) ◽  
pp. 569-575 ◽  
Author(s):  
Masakazu Fujimoto ◽  
◽  
Yongbo Wu ◽  
Mitsuyoshi Nomura ◽  
Hidenari Kanai ◽  
...  

The objectives of this paper are to describe a quantitative evaluation of mini-size diamond grinding wheel surface topography in Ultrasonic Assisted Grinding (UAG) process and demonstrate the effects of topography on grinding characteristics. In this study, threedimensional (3D) analysis of the wheel working surface was observed using a Scanning Electron Microscope (SEM) with four electron probes (hereafter described as 3D-SEM) in an on-surface UAG process. These results indicated that a good wheel surface maintained in the UAG process is related to the number and the area of cutting edges. Additionally, the resulting topographic features of the grinding wheel surface are closely related to low grinding forces and allow easy manufacturing of a mirror workpiece surface.


2013 ◽  
Vol 797 ◽  
pp. 234-239 ◽  
Author(s):  
Li Fei Liu ◽  
Fei Hu Zhang ◽  
Chun Hui Li ◽  
Jiang Chen ◽  
Min Hui Liu

In this paper, experiments are conducted to study the characters of Ultrasonic Assisted Grinding (UAG) and Conventional Grinding (CG), diamond grinding wheel is used in experiments, grinding forces and surface roughness are measured in both UAG and CG. The effects of different parameters on grinding force, surface roughness and force ratio are discussed. The results show that the grinding force and surface roughness in UAG is smaller than those in CG. The force ratio in UAG is lower than that in CG, which reveals that the grinding wheel has a good wear-resistant property in UAG process.


2007 ◽  
Vol 359-360 ◽  
pp. 369-273 ◽  
Author(s):  
Jian Xin Zheng ◽  
Jia Wen Xu

Ultrasonic machining is a practical process for advanced ceramic machining. Usually, ceramics with complex surfaces are machined with two common ultrasonic assisted contour machining methods, which may be classified as surface/point contact machining mode. While these methods are not suitable to machine some complex surfaces such as blade surface, so an ultrasonic assisted contour machining method using a simple shaped diamond grinding wheel to machine ceramic blade surface is presented, which is named as Numerical Control-Contour Evolution Ultrasonic Assisted Grinding (NC-CEUAG) method. In the NC-CEUAG process, the contour evolution motion of the grinding wheel is controlled by the NC system and the blade surface is the enveloping surface formed by the grinding wheel’ cutting edges when they cut into the ceramic specimen. In this paper, the relative motion between the grinding wheel and the specimen in the process of NC-CEUAG ceramic blade surface is analyzed. The mathematical models of ruled surfaces are constructed. The ceramic blades with ruled surface are machined with selected machining parameters on the retrofitting NC-CEUAG machine tool.


2013 ◽  
Vol 797 ◽  
pp. 356-361
Author(s):  
Wen Qing Song ◽  
Yong Bo Wu ◽  
Jian Guo Cao ◽  
Jing Ti Niu

Ultrasonic assisted grinding experiments were carried out to evaluate the effects of the ultrasonic vibration (UV) on the face grinding characteristics of nickel based superalloy of Rene77. In experiments, an electroplated cBN grinding wheel was ultrasonically vibrated dominantly along its axis. The experimental results indicated that the X-axis and Y-axis components of grinding forces with UV were smaller by 44.5% and 31.6%, respectively, than those without UV. The usual fractures and debris on the surface of workpiece disappeared and the work-surface roughness Ra was decreased by 42.3% once the UV was applied. The abrasion of the grinding wheel without UV is more serious than that with UV.


2014 ◽  
Vol 627 ◽  
pp. 191-196 ◽  
Author(s):  
Roman Wdowik ◽  
Marek Magdziak ◽  
Janusz Porzycki

The paper presents the results of investigations regarding surface roughness measurements in ultrasonic assisted grinding of selected ZrO2 based ceramic material. There are different results, in the area of surface roughness measurements, presented in the literature. The entry data of hybrid machining process (e.g. grinding wheel type, feed, machining strategy or process variant) may influence these results. The analysis of literature encourages to take up the investigations of surface quality in ultrasonic assisted machining. These investigations may be performed for specific ceramic products and technological tasks which are commonly applied in ceramic machining processes. The knowledge about the machining of ceramic materials in different sintering states is very limited. Based on this finding, ultrasonic assisted and conventional machining processes of ZrO2 based ceramic material in different sintering states were investigated.


2013 ◽  
Vol 797 ◽  
pp. 223-228
Author(s):  
Zhi Qiang Liang ◽  
Tian Feng Zhou ◽  
Xi Bin Wang ◽  
Yong Bo Wu ◽  
Wen Xiang Zhao

Grinding forces characteristics in elliptical ultrasonic assisted grinding (EUAG) of sapphire are investigated experimentally. The EUAG is a new grinding method proposed by the present authors in which an elliptical ultrasonic vibration is imposed on the workpiece by using an elliptical ultrasonic vibrator. In this paper, grinding experiments under the presence/absence of ultrasonic vibration assistance are performed. The effects of the vibration amplitude and grinding parameters such as the depth of cut, the grinding wheel speed on the grinding forces, grinding force ratioFn/Ftare clarified. The obtained conclusions are as follows: the grinding forces during EUAG lowers to 50% and grinding forces ratio becomes reduced by 33% compared that during conventional grinding (CG); the grinding forces during EUAG have the less variation rate than those during CG as grinding parameters change; higher grinding wheel speed causes the larger grinding forces in CG, but has little effect on the variation of grinding forces in EUAG. By using EUAG method, the grinding forces and force ratio are greatly decreased, and surface quality is better, meaning that grindability of sapphire material is improved.


Sign in / Sign up

Export Citation Format

Share Document