ultrasonic assisted grinding
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 1047 ◽  
pp. 62-67
Author(s):  
Shen Wang ◽  
Le Tong ◽  
Guang Jun Chen ◽  
Mao Xun Wang ◽  
Bin Dai ◽  
...  

7075 aluminum alloy is widely used due to its great performance, especially in aerospace area. In this paper, ultrasonic-assisted grinding technology is used to process 7075 aluminum alloy. The data is obtained through experiments, and the surface roughness and morphology of ultrasonic assisted grinding and conventional grinding under different spindle speeds, feed rates, and amplitudes are analyzed. Research has found that the increase in spindle speed and amplitude will improve the quality of the machined surface and reduce the surface roughness by 82.1% and 36%. However, with the increase of feed rate, the surface quality decreased significantly, and the surface roughness increased by 55.6%. The surface micro-morphology of the machined workpiece is observed, and the effects of different processing parameters on the surface micro-morphology are obtained.


2021 ◽  
Vol 324 ◽  
pp. 66-71
Author(s):  
Hua Dong Yu ◽  
Mao Xun Wang ◽  
Jin Kai Xu ◽  
Le Tong ◽  
Guang Jun Chen ◽  
...  

In this paper, through a series of grinding experiments with different machining parameters on the surface of the workpiece, the surface roughness under different machining parameters are obtained The surface roughness prediction model is constructed by the response surface method. The effects of feed rate, amplitude, and spindle speed on the surface roughness are analyzed. The results show that the surface quality of ultrasonic-assisted grinding is better than that of conventional grinding. Amplitude has the most prominent effect on the improvement of surface quality, followed by the spindle speed. The feed rate has little effect on the surface roughness. The model can predict 93.71% of the experimental results and the prediction error of the model is lower than 5%.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 238
Author(s):  
Weiqing Huang ◽  
Qunyou Zhong ◽  
Dawei An ◽  
Chenglong Yang ◽  
Yi Zhang

Ultrasonic-assisted grinding processing can effectively reduce the surface roughness and enhance the processing efficiency in the processing of hard and brittle materials. However, the most common ultrasonic assisted grinding is a type of contact ultrasonic grinding where the grinding tool directly contacts the workpiece, which means that it is necessary to accurately control the pre-pressure of the grinding tool on the workpiece. The control of pre-pressure will inevitably increase the complexity of the grinding device, and it is easy to wear the workpiece because of improper pre-pressure control. In this paper, a non-contact ultrasonic grinding method is proposed and the machining mechanism of non-contact ultrasonic grinding is revealed. The resonant frequency of the ultrasonic vibration system and vibration amplitude of the grinding tool working face were simulated and experimentally tested, respectively. Then, the experiment of non-contact ultrasonic grinding of a sapphire wafer was carried out. The result showed that non-contact ultrasonic grinding of the sapphire wafer could reduce the surface roughness by 48.6%. Compared with traditional contact grinding of sapphire wafer under certain pre-pressure conditions, the experimental results show that non-contact ultrasonic grinding has better effects in reducing surface roughness, improving processing efficiency, and improving the quality uniformity of the workpiece machining surface.


Sign in / Sign up

Export Citation Format

Share Document