Development of high precision grinding technology for irregularly shaped cutting edge of punch

2019 ◽  
Vol 2019.13 (0) ◽  
pp. C24
Author(s):  
Keitaro SHIGEMURA ◽  
Hiroaki YAMADA ◽  
Jun’ichi KANEKO ◽  
Takeyuki ABE ◽  
Kenichiro HORIO
2001 ◽  
Vol 53 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Seung Hwan Chang ◽  
Po Jin Kim ◽  
Dai Gil Lee ◽  
Jin Kyung Choi

2019 ◽  
Vol 75 (6) ◽  
pp. 833-841 ◽  
Author(s):  
Benjamin Heacock ◽  
Robert Haun ◽  
Katsuya Hirota ◽  
Takuya Hosobata ◽  
Michael G. Huber ◽  
...  

The construction is described of a monolithic thick-crystal perfect silicon neutron interferometer using an ultra-high-precision grinding technique and a combination of annealing and chemical etching that differs from the construction of prior neutron interferometers. The interferometer is the second to have been annealed after machining and the first to be annealed prior to chemical etching. Monitoring the interference signal at each post-fabrication step provides a measurement of subsurface damage and its alleviation. In this case, the strain caused by subsurface damage manifests itself as a spatially varying angular misalignment between the two relevant volumes of the crystal and is reduced from ∼10−5 rad to ∼10−9 rad by way of annealing and chemical etching.


Procedia CIRP ◽  
2016 ◽  
Vol 45 ◽  
pp. 143-146 ◽  
Author(s):  
G. Onwuka ◽  
K. Abou-El-Hossein

2009 ◽  
Vol 2009 (0) ◽  
pp. 557-559
Author(s):  
Masayoshi MIZUTANI ◽  
Shoichi KIKUCHI ◽  
Yo HIROTA ◽  
Jun KOMOTORI ◽  
Hitoshi OHMORI ◽  
...  

2021 ◽  
Vol 248 ◽  
pp. 04011
Author(s):  
Petr Pivkin ◽  
Vladimir Grechishnikov ◽  
Artem Ershov ◽  
Vladimir Kuptsov ◽  
Xiaohui Jiang

Processing of high-precision holes in one technological operation is an urgent problem of advanced manufacturing. Processing of precise holes in parts for aerospace and machine-building industries with a diameter of up to 30 mm is performed during countersinking, deployment or grinding operations. These operations are applied only if there already exists a pre-treated hole. Monolithic three-fluted drills have been becoming common for processing high-precision holes of 7-8 quality over the last few years. The processing of various types of materials such as stainless steels, cast iron and heat-resistant steels requires rational geometric and structural parameters of the cutting tool. The nature of the load distribution between all the teeth during drilling plays a huge role in the processing efficiency. Even load distribution between the three teeth and a positive geometry improves self-centering and reduces the deviation from the specified axis of the hole. The drill sharpening provides positive geometry along the entire main cutting edge. The influence of the geometric parameters of the cutting edge of the screw groove on the shape of the drill bit is equally important. Existing approaches to the design of the thinning do not account for the influence of the geometric parameters of the cutting edge on the section of the screw groove. Analytical approaches to modelling of the main cutting edges are typically married with difficulties associated with achieving a smooth change in the angle of inclination to the tangent of the cutting edge. The complexity of the aforementioned task is largely due to the presence of critical points at the interface of the spiral groove and thinning. Determining the rational shape of two sections of the main cutting edge performed in this study is a complicated task that includes several steps needed to find the number of nodal points. Achieving a positive rake angle in the normal section to the cutting edge at the gash area that was formed via a special sharpening is one of the most important results of this paper. The rational shape of the cutting edge and the front surface provides an increase in the strength of the cutting part by 1.3 times.


Sign in / Sign up

Export Citation Format

Share Document