In Situ Measurement of ATP in Deep-Sea using Microfluidic Device

Author(s):  
Tatsuhiro Fukuba ◽  
Kei Okamura ◽  
Teruo Fujii
Keyword(s):  
Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 370 ◽  
Author(s):  
Tatsuhiro Fukuba ◽  
Takuroh Noguchi ◽  
Kei Okamura ◽  
Teruo Fujii

Total ATP (adenosine triphosphate) concentration is a useful biochemical parameter for detecting microbial biomass or biogeochemical activity anomalies in the natural environment. In this study, we describe the development and evaluation of a new version of in situ ATP analyzer improved for the continuous and quantitative determination of ATP in submarine environments. We integrated a transparent microfluidic device containing a microchannel for cell lysis and a channel for the bioluminescence L–L (luciferin–luciferase) assay with a miniature pumping unit and a photometry module for the measurement of the bioluminescence intensity. A heater and a temperature sensor were also included in the system to maintain an optimal temperature for the L–L reaction. In this study, the analyzer was evaluated in deep sea environments, reaching a depth of 200 m using a remotely operated underwater vehicle. We show that the ATP analyzer successfully operated in the deep-sea environment and accurately quantified total ATP within the concentration lower than 5 × 10−11 M.


2015 ◽  
Vol 49 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Hitoshi Kodamatani ◽  
Yuriko Kono ◽  
Akinori Takeuchi ◽  
Ken Takai ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Zhiqi Zhao ◽  
Qiujin Li ◽  
Linna Chen ◽  
Yu Zhao ◽  
Jixian Gong ◽  
...  

Flexible biosensors for monitoring systems have emerged as a promising portable diagnostics platform due to their potential for in situ point-of-care (POC) analytic devices. Assessment of biological analytes in sweat...


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


2001 ◽  
Vol 65 (16) ◽  
pp. 2677-2690 ◽  
Author(s):  
F Wenzhöfer ◽  
M Adler ◽  
O Kohls ◽  
C Hensen ◽  
B Strotmann ◽  
...  

1991 ◽  
Vol 159 (1) ◽  
pp. 473-487 ◽  
Author(s):  
ELIZABETH DAHLHOFF ◽  
GEORGE N. SOMERO

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.


2005 ◽  
Vol 61 (5) ◽  
pp. 835-843 ◽  
Author(s):  
Hiroshi Ishida ◽  
Yuji Watanabe ◽  
Tatsuo Fukuhara ◽  
Sho Kaneko ◽  
Kazushi Furusawa ◽  
...  

2012 ◽  
Vol 29 (4) ◽  
pp. 494-501 ◽  
Author(s):  
Abhishek G. Deshpande ◽  
Nicholas J. Darton ◽  
Kamran Yunus ◽  
Adrian C. Fisher ◽  
Nigel K.H. Slater

Sign in / Sign up

Export Citation Format

Share Document