1B14 Sensitivity Analysis for Natural Frequency of Tire Lateral Bending Mode(The 12th International Conference on Motion and Vibration Control)

2014 ◽  
Vol 2014.12 (0) ◽  
pp. _1B14-1_-_1B14-9_ ◽  
Author(s):  
Masami MATSUBARA ◽  
Nobutaka Tsujiuchi ◽  
Takayuki Koizumi ◽  
Kensuke BITO
2015 ◽  
Vol 752-753 ◽  
pp. 839-844
Author(s):  
R.M.S. Zetty ◽  
B.A. Aminudin ◽  
L.M. Aung ◽  
M.K. Khalid ◽  
H.M.Y. Norfazrina ◽  
...  

A modeling through sensitivity analysis is one of the promising methods to investigate the dynamic characteristics of complex mechanical parts. This study aimed to investigate the effect of sensitivity based on mass and stiffness modification in automobile crankshaft as a function of natural frequency. Verification for the crankshaft model that is used in the experiment and simulation was done and both results showed good agreement and small errors percentage. The modification was also done by reducing the different percentage of crankshaft’s mass and stiffness. Partial differential analysis was used in the sensitivity analysis in order to figure out the natural frequency after every set of modification. According to the results, we also found that there were changes of sensitivity value by changes in mass value but the stiffness value remains unchanged. However, there is no significant effect of stiffness reduction on vibration was found in this research.


Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

Abstract We investigate the nonlinear bending-torsion response of a cantilever beam to a transverse harmonic excitation, where the forcing frequency is near the natural frequency of the first torsional mode. We analyze the case where the first in-plane bending mode is activated by a nonresonant mechanism. We use the method of time-averaged Lagrangian and virtual work to determine the equations governing the modulations of the phases and amplitudes of the interacting modes. These equations are then used to investigate the nonlinear behavior of limit-cycle oscillations of the beam as the excitation amplitude is slowly varied. As an example, we consider the response of an aluminum beam for which the natural frequency of the first in-plane bending mode is fv1 ≈ 5.7 Hz and the natural frequency of the first torsional mode is fϕ1 ≈ 138.9 Hz.


Author(s):  
Dong Zhao ◽  
Rujian Ma ◽  
Dongmei Cai

A wideband multiple extended tuned mass dampers (METMD) system has been developed for reducing the multiple resonant responses of the platforms to all kinds of loads, such as earthquake, typhoon, tsunami and big ice load. This system is composed of several subsystems, each of which consists of one set of extended tuned mass damper (ETMD) unit covering a specific frequency bandwidth, and its average frequency is tuned to one of the first resonant frequencies of the platform. The offshore platform is simplified to a single degree-of-freedom (DOF) system to which a METMD subsystem (composed of m ETMDs) is attached and constitutes m+1 DOFs system. The total mass ratio of the METMD subsystem to the platform is 14% and the frequency ratio of the exciting frequency to the platform’s natural frequency varies in [0.5, 1.5]. The theory analysis shows that: 1) the platform has the better vibration control effect when the non-dimensional frequency bandwidth Ω, which is defined as the ratio of the frequency range to the controlled (target) platforms natural frequency, is in [0.35, 0.6]; 2) the damping coefficient ξ of ETMD systems is in [0.05, 0.15] and 3) the number of the ETMDs is 5 when Ω = 0.45 and ξ = 0.1. The FEM simulation shows that the METMD has a better vibration control effect on the mega-platforms’ vibration control under the random ocean wave load.


Author(s):  
Qing He ◽  
Dongmei Du

The disturbance of electric power system makes large-scale turbine-generator shafts generate torsional vibration. A available method to restrain the torsional vibration of turbine-generator shafts is that all the natural frequencies of torsional vibration of turbine-generator shafts must keep away from the working frequency and its harmonic frequencies as well as all the frequencies that possibly bring on interaction between turbine-generator and electric power system so that the torsional resonation of shafts may not occur. A dynamic design method for natural frequencies of torsional vibration of rotor system based on sensitivity analysis is presented. The sensitivities of natural frequency of torsional vibration to structure parameters of rotor system are obtained by means of the theory of sensitivity. After calculated the torsional vibration dynamic characteristics of original shafts of a torsional vibration stand that simulates the real shafts of 300MW turbine-generator, the dynamic modification for the torsional vibration natural frequency is carried out by the sensitivity analysis method, which makes the first-five natural frequencies of torsional vibration of the stand is very close to the design object. It is proved that the sensitivity analysis method can be used to the dynamic adjustment and optimal design of real shafts of turbine-generator.


2018 ◽  
Vol 2018 (0) ◽  
pp. 121
Author(s):  
Kai KURIHARA ◽  
Takahiro KONDOU ◽  
Hiroki MORI ◽  
Kenichiro MATSUZAKI ◽  
Nobuyuki SOWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document