218 Fabrication of three-dimensional laminate of thin metal wire using a laser

2014 ◽  
Vol 2014 (0) ◽  
pp. 107-108
Author(s):  
Naoki Maeda ◽  
Tomohisa Tanaka ◽  
Jiang Zhu ◽  
Yoshio Saito
1979 ◽  
Vol 20 (12) ◽  
pp. 5100-5103
Author(s):  
J. W. Cook ◽  
M. J. Skove ◽  
E. P. Stillwell

1999 ◽  
Author(s):  
Seok Chung ◽  
Jun Keun Chang ◽  
Dong Chul Han

Abstract To make some MF.MS devices such as sensors and actuators be useful in the medical application, it is required to integrate this devices with power or sensor lines and to keep the hole devices biocompatible. Integrating micro machined sensors and actuators with conventional copper lines is incompatible because the thin copper lines are not easy to handle in the mass production. To achieve the compatibility of wiring method between MEMS devices, we developed the thin metal film deposition process that coats micropattered thin copper films on the non silicon-wafer substrate. The process was developed with the custom-made three-dimensional thin film sputter/evaporation system. The system consists of process chamber, two branch chambers, substrate holder unit and linear/rotary motion feedthrough. Thin metal film was deposited on the biocompatible polymer, polyurethane (PellethaneR) and silicone, catheter that is 2 mm in diameter and 1,000 mm in length. We deposited Cr/Cu and Ti/Cu layer and made a comparative study of the deposition processes, sputtering and evaporation. The temperature of both the processes were maintained below 100°C, for the catheter not melting during the processes. To use the films as signal lines connect the signal source to the actuator on the catheter tip, we machined the films into desired patterns with the eximer laser. In this paper, we developed the thin metal film deposition system and processes for the biopolymeric substrate used in the medical MEMS devices.


2006 ◽  
Vol 964 ◽  
Author(s):  
Vitaliy Lomakin ◽  
Yeshaiahu Fainman ◽  
Gennady Shvets

ABSTRACTNovel two and three-dimensional doubly negative metamaterials (DNM), viz. metamaterial with simultaneously negative permittivity, permeability, and index of refraction, are introduced. The metamaterials comprise deeply subwavelength periodic unit cells, can be tuned to operate in the near infra-red and visible spectra, and can be manufactured using standard nanofabrication methods with compatible materials. The DNMs' unit cell comprises an optically thin metal film sandwiched between two thin metal strips or patches residing at a small distance from the film. The cavity formed between the strips or patches supports resonances with magnetic and electric response that can be tuned to exist in overlapping frequency bands thus leading to the DNM operation.


2015 ◽  
Vol 3 ◽  
pp. 433-439
Author(s):  
Zelong Wang ◽  
Ken-ichi Tsuji ◽  
Toru Tsuji ◽  
Yuka Takai ◽  
Akihiko Goto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document