G106 Hydrogen Production from Methane Thermal Decomposition using Carbon Blacks

2011 ◽  
Vol 2011.16 (0) ◽  
pp. 171-172
Author(s):  
Yuki KAMEYA ◽  
Katsunori HANAMURA
2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Emmi Välimäki ◽  
Lasse Yli-Varo ◽  
Henrik Romar ◽  
Ulla Lassi

The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review, methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes, known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane, respectively, appear to have the greatest potential for hydrogen production. In particular, the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.


2007 ◽  
Vol 26-28 ◽  
pp. 301-304
Author(s):  
Shuang Ye Dai ◽  
Ge You Ao ◽  
Myung Soo Kim

Carbon blacks were used as catalysts for hydrogen production through hydrocarbon decomposition. The aim of this work is to find suitable conditions for decomposition reaction to cut down the net cost of hydrogen production. Carbon blacks after hydrocarbon decomposition under different operation conditions were mixed with NBR rubber. The surface area of carbon black increased with low weight gain in methane decomposition caused by carbon deposits on the surface of carbon black aggregates, and the decrease of surface area with further weight gain might be due to the carbon deposits adhering to each other and forming bigger aggregates. The same results were gotten from decomposition of mixture gas of methane and propane. The surface area of carbon black always decreased with the development of propane decomposition reaction. With the same carbon black loading, the composites filled by carbon blacks with low weight gain in methane and methane-propane mixture gas decompositions showed higher tensile strength than those mixed with raw carbon blacks, but there were no significant differences in 300% modulus. With the increase of carbon blacks loading in all composites, 300% modulus and tensile strength always increased. The surface resistivity of composites showed that it was much easier for carbon blacks with low weight gain in methane and methane-propane mixture gas decompositions to dissipate well in the in rubber system.


2016 ◽  
Vol 4 (25) ◽  
pp. 9744-9749 ◽  
Author(s):  
Davide Ansovini ◽  
Coryl Jing Jun Lee ◽  
Chin Sheng Chua ◽  
Lay Ting Ong ◽  
Hui Ru Tan ◽  
...  

A cobalt–nickel sulfide composite electrode synthesized onto Ni foam through a facile thermal decomposition method showed remarkable activity towards electrocatalytic hydrogen production.


1970 ◽  
Vol 48 (4) ◽  
pp. 615-627 ◽  
Author(s):  
R. Hiatt ◽  
Sandor Szilagyi

Rates and products have been determined for the thermal decomposition of sec-butyl peroxide at 110–150 °C in several solvents.The decomposition was shown to be unimolecular with energies of activation in toluene, benzene, and cyclohexane of 35.5 ± 1.0, 33.2 ± 1.0, 33.8 ± 1.0 kcal/mole respectively. The activation energy of thermal decomposition for the deuterated peroxide was found to be 37.2 + 1.0 kcal/mole in toluene.About 70–80% of the products could be explained by known reactions of free alkoxy radicals, and very little, if any, disproportionation of two sec-butoxy radicals in the solvent cage could be detected.The other 20–30% of the peroxide yielded H2 and methyl ethyl ketone. The yield of H2 was unaffected by the nature or the viscosity of the solvent, but H2 was not formed when s-Bu2O2 was photolyzed in toluene at 35 °C nor when the peroxide was thermally decomposed in the gas phase.α,α′-Dideutero-sec-butyl peroxide was prepared and decomposed in toluene at 110–150 °C. The yield of D2 was about the same as the yield of H2 from s-Bu2O2, but the rate of decomposition (at 135 °C) was only 1/1.55 as fast.Mechanisms for hydrogen production are discussed, but none satisfactorily explains all the evidence.


Sign in / Sign up

Export Citation Format

Share Document