sulfur recovery
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 70)

H-INDEX

19
(FIVE YEARS 5)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Muhammad Arslan Zahid ◽  
Muhammad Ahsan ◽  
Iftikhar Ahmad ◽  
Muhammad Nouman Aslam Khan

The Claus process is one of the promising technologies for acid gas processing and sulfur recovery. Hydrogen sulfide primarily exists as a byproduct in the gas processing unit. It must be removed from natural gas. The Environmental Protection Agency (EPA) notices that increasing SO2 and CO2 in the air harms the environment. Sulfur generally has an elemental content of 0.1–6 wt % in crude oil, but the value could be higher than 14% for some crude oils and asphalts. It produces SO2 and CO2 gases, which damage the environment and atmosphere of the earth, called primary pollutants. When SO2 gas is reacted with water in the atmosphere, it causes sulphur and nitric acid, called a secondary pollutant. The world countries started desulphurization in 1962 to reduce the amount of sulfur in petroleum products. In this research, the Claus process was modeled in Aspen Plus software (AspenTech, Bedford, MA, USA) and industrial data validated it. The Peng–Robinson method is used for the simulation of hydrocarbon components. The influence of oxygen gas concentration, furnace temperature, the temperature of the first catalytic reactor, and temperature of the second catalytic reactor on the Claus process were studied. The first objective of the research is process modeling and simulation of a chemical process. The second objective is optimizing the process. The optimization tool in the Aspen Plus is used to obtain the best operating parameters. The optimization results show that sulfur recovery increased to 18%. Parametric analysis is studied regarding operating parameters and design parameters for increased production of sulfur. Due to pinch analysis on the Claus process, the operating cost of the heat exchangers is reduced to 40%. The third objective is the cost analysis of the process. Before optimization, it is shown that the production of sulfur recovery increased. In addition, the recovery of sulfur from hydrogen sulfide gas also increased. After optimizing the process, it is shown that the cost of heating and cooling utilities is reduced. In addition, the size of equipment is reduced. The optimization causes 2.5% of the profit on cost analysis.


2021 ◽  
Author(s):  
Satyadileep Dara ◽  
Salisu Ibrahim ◽  
Abhijeet Raj ◽  
Ibrahim Khan ◽  
Eisa Al Jenaibi

Abstract The oxidation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) in the furnace of SRUs at high temperature is an effective solution to prevent Claus catalyst deactivation in the downstream catalytic converters. However, the existing SRUs do not have the means to monitor BTEX emissions from Claus furnace due to lack of commercial online analyzers in the market. This often leads to excessive temperatures up to 1150 °C in the furnace to ensure BTEX destruction. Such high temperatures increase fuel gas consumption and CO emission and reduce sulfur recovery efficiency. To obtain continuous BTEX indication at the furnace exit, an online BTEX soft sensor model is developed to predict BTEX concentration at furnace exit. Subsequently, this soft sensor will be implemented in one of the SRUs of ADNOC Gas Processing. The BTEX soft sensor has been developed by constructing a compact kinetic model for aromatics destruction in the furnace based on the understanding of BTEX oxidation mechanisms derived using a detailed and well validated kinetic model developed previously. The kinetic model, including its rate parameters were incorporated into Hysys/Sulsim software, where both the reaction furnace and catalytic converters were simulated. The BTEX soft sensor has been validated with plant data from different ADNOC Gas Processing SRU trains under a wide range of feed conditions (particularly, with varying relative concentrations of H2S, CO2, and hydrocarbons in acid gas feed) in order to ensure its robustness and versatile predictive accuracy. The model predicts BTEX emissions from the reaction furnace under a wide range of operating conditions in the furnace with deviation not exceeding +/- 5 ppm. It also predicts the reaction furnace temperature (with a deviation of +/- 5%) and species composition from the furnace exit within a reasonable error margin. Presently, the model is in the process of being deployed in one of the SRUs of ADNO Gas Processing as an online soft sensor, where it can read the feed conditions, predict the BTEX exit concentration and write this value to the DCS. Thus, plant operators can monitor BTEX exit concentration on continuous basis and use it as a reliable basis to lower fuel gas co-firing rate in the furnace to achieve optimum furnace temperature that provide efficient BTEX destruction and low CO emission. The online soft analyzer, when deployed in SRU, will continuously predict BTEX emission from SRU furnace with high accuracy, which cannot be done experimentally in the plant or reliably using most of the existing commercial software. This approach can be used to seek favorable means of optimizing BTEX destruction to enhance sulfur recovery, while decreasing fuel gas consumption and carbon footprint in sulfur recovery units to reduce operating cost.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121689
Author(s):  
Rohen Prinsloo ◽  
Christopher B. Lavery ◽  
Robert A. Marriott

Author(s):  
Huanqi He ◽  
Brett M. Wagner ◽  
Avery L. Carlson ◽  
Cheng Yang ◽  
Glen T. Daigger

Abstract The membrane biofilm reactor (MBfR), which is based on the counter diffusion of the electron donors and acceptors into the biofilm, represents a novel technology for wastewater treatment. When process air or oxygen is supplied, the MBfR is known as the membrane aerated biofilm reactor (MABR), which has high oxygen transfer rate and efficiency, promoting microbial growth and activity within the biofilm. Over the past few decades, lab-scale studies have helped researchers and practitioners understand the relevance of influencing factors and biological transformations in MABRs. In recent years, pilot- to full-scale installations are increasing along with process modeling. The resulting accumulated knowledge has greatly improved understanding of the counter-diffusional biological process, with new challenges and opportunities arising. Therefore, it is crucial to provide new insights by conducting this review. This paper reviews wastewater treatment advancements using MABR technology, including design and operational considerations, microbial community ecology, and process modeling. Treatment performance of pilot- to full-scale MABRs for process intensification in existing facilities is assessed. This paper also reviews other emerging applications of MABRs, including sulfur recovery, industrial wastewater, and xenobiotics bioremediation, space-based wastewater treatment, and autotrophic nitrogen removal. In conclusion, commercial applications demonstrate that MABR technology is beneficial for pollutants (COD, N, P, xenobiotics) removal, resource recovery (e.g., sulfur), and N2O mitigation. Further research is needed to increase packing density while retaining efficient external mass transfer, understand the microbial interactions occurring, address existing assumptions to improve process modeling and control, and optimize the operational conditions with site-specific considerations.


Sign in / Sign up

Export Citation Format

Share Document