1P1-A26 Analysis of Head Movements of Automobile Passenger using A Mathematical Model of Motion Sickness

2010 ◽  
Vol 2010 (0) ◽  
pp. _1P1-A26_1-_1P1-A26_4
Author(s):  
Satoru Fujisawa ◽  
Katsuya Imaizumi ◽  
Takahiro Wada ◽  
Norimasa Kamiji ◽  
Shun'ichi Doi
1999 ◽  
Vol 9 (2) ◽  
pp. 89-101
Author(s):  
L.J.G. Bouyer ◽  
D.G.D. Watt

Acute, reversible changes in human vestibular function can be produced by exposure to “Torso Rotation” (TR), a method involving the overuse of certain types of simple, self-generated movements. A single session results in multiple, short-lasting aftereffects, including perceptual illusions, VOR gain reduction,gaze and postural instability, and motion sickness. With repeated exposure, motion sickness susceptibility disappears and gaze stability improves. VOR gain continues to be reduced, however. Therefore, another gaze stabilizing system must come into play. Are visual and/or neck inputs involved in this functional compensation? Six subjects participated in this 7-day experiment. Eye and head movements were measured during 2 tests: 1) voluntary “head only” shaking between 0.3 and 3.0 Hz (lights off) and 2) voluntary “head and torso” shaking, moving the upper body en bloc (neck immobilized). Measurements were obtained before and repeatedly after TR. Velocity gain (eye velocity/head velocity) was determined for each of these tests. Each day, mean velocity gain during “head only” shaking in the dark (averaged over 1.0 to 2.0 Hz) dropped significantly after TR ( P < 0.01), with no long-term improvement ( P > 0.9). Similar results, although more noisy, were obtained for “head and torso” shaking. As a control, EOG calibration data confirmed that gaze stability in the light did improve over the 7 days of testing. This experiment demonstrates that the reduction in gaze instability following repeated exposure to TR results from an increased use of vision. It excludes the VOR, the COR, and predictive mechanisms (including efference copy) as contributors. In addition, in the 20 minutes following TR completion, gaze stability recovered less than during previous VOR testing in the dark. These results are compatible with the motion that exposure to TR leads to a change in sensorimotor strategy involving a de-emphasis of vestibular inputs.


1976 ◽  
Author(s):  
Michael E. McCauley ◽  
Jackson W. Royal ◽  
C. Dennis Wylie ◽  
James F. O'Hanlon ◽  
Robert R. Mackie

1992 ◽  
Vol 1 (3) ◽  
pp. 306-310 ◽  
Author(s):  
Lawrence J. Hettinger ◽  
Gary E. Riccio

Visually induced motion sickness is a syndrome that occasionally occurs when physically stationary individuals view compelling visual representations of self-motion. It may also occur when detectable lags are present between head movements and recomputation and presentation of the visual display in helmet-mounted displays. The occurrence of this malady is a critical issue for the future development and implementation of virtual environments. Applications of this emerging technology are likely to be compromised to the extent that users experience illness and/or incapacitation. This article presents an overview of what is currently known regarding the relationship between visually specified self-motion in the absence of inertial displacement and resulting illness and perceptual-motor disturbances.


2003 ◽  
Vol 13 (2-3) ◽  
pp. 79-91
Author(s):  
Stefano Ramat ◽  
Roberto Schmid ◽  
Daniela Zambarbieri

Passive head rotation in darkness produces vestibular nystagmus, consisting of slow and quick phases. The vestibulo-ocular reflex produces the slow phases, in the compensatory direction, while the fast phases, in the same direction as head rotation, are of saccadic origin. We have investigated how the saccadic components of the ocular motor responses evoked by active head rotation in darkness are generated, assuming the only available sensory information is that provided by the vestibular system. We recorded the eye and head movements of nine normal subjects during active head rotation in darkness. Subjects were instructed to rotate their heads in a sinusoidal-like manner and to focus their attention on producing a smooth head rotation. We found that the desired eye position signal provided to the saccadic mechanism by the vestibular system may be modeled as a linear combination of head velocity and head displacement information. Here we present a mathematical model for the generation of both the slow and quick phases of vestibular nystagmus based on our findings. Simulations of this model accurately fit experimental data recorded from subjects.


2003 ◽  
Vol 13 (2-3) ◽  
pp. 65-77
Author(s):  
Laurence R. Young ◽  
Kathleen H. Sienko ◽  
Lisette E. Lyne ◽  
Heiko Hecht ◽  
Alan Natapoff

Head movements made while the whole body is rotating at unusually high angular velocities (here with supine body position about an earth-vertical axis) result in inappropriate eye movements, sensory illusions, disorientation, and frequently motion sickness. We investigated the acquisition and retention of sensory adaptation to cross-coupled components of the vestibulo-ocular reflex (VOR) by asking eight subjects to make headturns while being rotated at 23 rpm on two consecutive days, and again a week later. The dependent measures were inappropriate vertical VOR, subjective tilt, and motion sickness in response to 90° yaw out-of-plane head movements. Motion sickness was evaluated during and following exposure to rotation. Significant adaptation effects were found for the slow phase velocity of vertical nystagmus, the reported magnitude of the subjective tilt experienced during head turns, and motion-sickness scores. Retention of adaptation over a six-day rest period without rotation occurred, but was not complete for all measures. Adaptation of VOR was fully maintained while subjective tilt was only partially maintained and motion-sickness scores continued to decrease. Practical implications of these findings are discussed with particular emphasis on artificial gravity, which could be produced in weightlessness by means of a short-radius (2 m) rotator.


Author(s):  
Hikaru Sato ◽  
Yuki Sato ◽  
Takahiro Wada

The vestibulo-ocular reflex (VOR) is the reflexive eye movement occurring in the opposite direction of head movement to stabilize the visual image during head movement. We hypothesize that there exists a correlation between motion sickness and the accuracy of VOR because motion sickness and VOR are thought to be related to the head movement signals estimated in the central nervous system. The first purpose of the present research is to investigate the relationship between motion sickness and VOR accuracy using a mathematical model, which simultaneously describes motion sickness and VOR. The result of numerical simulation experiments shows a strong negative correlation between VOR accuracy and the severity of motion sickness. The second purpose is to investigate the relationship between motion sickness and VOR accuracy by experiments on humans. The result shows moderate negative correlations between the VOR accuracy and the severity of motion sickness among participants.


Sign in / Sign up

Export Citation Format

Share Document