Verification of the effect of biarticular muscle on the jumping motion of the legged robot driven by McKibben pneumatic muscles

Author(s):  
Remi IWAMOTO ◽  
Yasuhiro SUGIMOTO ◽  
Daisuke NAKANISHI ◽  
Keisuke NANIWA ◽  
Takahiro GOTO ◽  
...  
2013 ◽  
Vol 133 (3) ◽  
pp. 663-671
Author(s):  
Hiroshi Hirata ◽  
Yorinao Mizushima ◽  
Shigeto Ouchi ◽  
Nariyuki Kodani

2021 ◽  
pp. 1-11
Author(s):  
Kale Mehmet

BACKGROUND: There is insufficient knowledge about the rate of force development (RFD) characteristics over both single and multiple joint movements and the electromechanical delay (EMD) values obtained in athletes and untrained individuals. OBJECTIVE: To compare single and multiple joint functions and the neural drive of trained athletes and untrained individuals. METHODS: Eight trained athletes and 10 untrained individuals voluntarily participated to the study. The neuromuscular performance was assessed during explosive and maximum voluntary isometric contractions during leg press and knee extension related to single and multiple joint. Explosive force and surface electromyography of eight superficial lower limb muscles were measured in five 50-ms time windows from their onset, and normalized to peak force and electromyography activity at maximum voluntary force, respectively. The EMD was determined from explosive voluntary contractions (EVC’s). RESULTS: The results showed that there were significant differences in absolute forces during knee extension maximum voluntary force and EVC’s (p< 0.01) while trained athletes achieved greater relative forces than untrained individuals of EVC at all five time points (p< 0.05). CONCLUSIONS: The differences in explosive performance between trained athletes and untrained individuals in both movements may be explained by different levels of muscle activation within groups, attributed to variation in biarticular muscle function over both activities.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3679
Author(s):  
Dingkui Tian ◽  
Junyao Gao ◽  
Xuanyang Shi ◽  
Yizhou Lu ◽  
Chuzhao Liu

The highly dynamic legged jumping motion is a challenging research topic because of the lack of established control schemes that handle over-constrained control objectives well in the stance phase, which are coupled and affect each other, and control robot’s posture in the flight phase, in which the robot is underactuated owing to the foot leaving the ground. This paper introduces an approach of realizing the cyclic vertical jumping motion of a planar simplified legged robot that formulates the jump problem within a quadratic-programming (QP)-based framework. Unlike prior works, which have added different weights in front of control tasks to express the relative hierarchy of tasks, in our framework, the hierarchical quadratic programming (HQP) control strategy is used to guarantee the strict prioritization of the center of mass (CoM) in the stance phase while split dynamic equations are incorporated into the unified quadratic-programming framework to restrict the robot’s posture to be near a desired constant value in the flight phase. The controller is tested in two simulation environments with and without the flight phase controller, the results validate the flight phase controller, with the HQP controller having a maximum error of the CoM in the x direction and y direction of 0.47 and 0.82 cm and thus enabling the strict prioritization of the CoM.


Sign in / Sign up

Export Citation Format

Share Document