scholarly journals Vertical Jumping for Legged Robot Based on Quadratic Programming

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3679
Author(s):  
Dingkui Tian ◽  
Junyao Gao ◽  
Xuanyang Shi ◽  
Yizhou Lu ◽  
Chuzhao Liu

The highly dynamic legged jumping motion is a challenging research topic because of the lack of established control schemes that handle over-constrained control objectives well in the stance phase, which are coupled and affect each other, and control robot’s posture in the flight phase, in which the robot is underactuated owing to the foot leaving the ground. This paper introduces an approach of realizing the cyclic vertical jumping motion of a planar simplified legged robot that formulates the jump problem within a quadratic-programming (QP)-based framework. Unlike prior works, which have added different weights in front of control tasks to express the relative hierarchy of tasks, in our framework, the hierarchical quadratic programming (HQP) control strategy is used to guarantee the strict prioritization of the center of mass (CoM) in the stance phase while split dynamic equations are incorporated into the unified quadratic-programming framework to restrict the robot’s posture to be near a desired constant value in the flight phase. The controller is tested in two simulation environments with and without the flight phase controller, the results validate the flight phase controller, with the HQP controller having a maximum error of the CoM in the x direction and y direction of 0.47 and 0.82 cm and thus enabling the strict prioritization of the CoM.

10.5772/50916 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Zhaohong Xu ◽  
Tiansheng Lü ◽  
Xuyang Wang

Human jumping motion includes stance phase, flight phase and landing impact phase. Jumping robot belongs to a variable constraints system because every phase has different constraint conditions. An unified dynamics equation during stance phase and flight phase is established based on floated-basis space. Inertia matching is used to analyze actuator/gear systems and select the optimum gear ratio based on the transmission performance between the torque produced at the actuator and the torque applied to the load. Load matching is an important index which affects jumping performance and reflects the capability of supporting a weight or mass. It also affects the distributing of the center of gravity (COG). Regarding jumping robot as a redundant manipulator with a load at end-effector, inertia matching can be applied to optimize load matching for jumping robot. Inertia matching manipulability and directional manipulability are easy to analyze and optimize the load matching parameters. A 5th order polynomial function is defined to plan COG trajectory of jumping motion, taking into account the constraint conditions of both velocity and acceleration. Finally, the numerical simulation of vertical jumping and experimental results show inertia matching is in direct proportion to jumping height, and inertia matching manipulability is a valid method to load matching optimization and conceptual design of robot.


Author(s):  
Joseph Ayers

This chapter describes how synthetic biology and organic electronics can integrate neurobiology and robotics to form a basis for biohybrid robots and synthetic neuroethology. Biomimetic robots capture the performance advantages of animal models by mimicking the behavioral control schemes evolved in nature, based on modularized devices that capture the biomechanics and control principles of the nervous system. However, current robots are blind to chemical senses, difficult to miniaturize, and require chemical batteries. These obstacles can be overcome by integration of living engineered cells. Synthetic biology seeks to build devices and systems from fungible gene parts (gene systems coding different proteins) integrated into a chassis (induced pluripotent eukaryotic cells, yeast, or bacteria) to produce devices with properties not found in nature. Biohybrid robots are examples of such systems (interacting sets of devices). A nascent literature describes genes that can mediate organ levels of organization. Such capabilities, applied to biohybrid systems, portend truly biological robots guided, controlled, and actuated solely by life processes.


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 57-62
Author(s):  
Alexios Papacharalampopoulos ◽  
Harry Bikas ◽  
Christos Michail ◽  
Panagiotis Stavropoulos

Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


Author(s):  
Timothy Sullivan ◽  
Justin Seipel

The Spring Loaded Inverted Pendulum (SLIP) model was developed to describe center of mass movement patterns observed in animals, using only a springy leg and a point mass. However, SLIP is energy conserving and does not accurately represent any biological or robotic system. Still, this model is often used as a foundation for the investigation of improved legged locomotion models. One such model called Torque Damped SLIP (TD-SLIP) utilizes two additional parameters, a time dependent torque and dampening to drastically increase the stability. Forced Damped SLIP (FD-SLIP), a predecessor of TD-SLIP, has shown that this model can be further simplified by using a constant torque, instead of a time varying torque, while still maintaining stability. Using FD-SLIP as a base, this paper explores a leg placement strategy using a simple PI controller. The controller takes advantage of the fact that the energy state of FD-SLIP is symmetric entering and leaving the stance phase during steady state conditions. During the flight phase, the touch down leg angle is adjusted so that the energy dissipation due to dampening, during the stance phase, compensates for any imbalance of energy. This controller approximately doubles the region of stability when subjected to velocity perturbations at touchdown, enables the model to operate at considerably lower torque values, and drastically reduces the time required to recover from a perturbation, while using less energy. Finally, the leg placement strategy used effectively imitates the natural human response to velocity perturbations while running.


2011 ◽  
Vol 314-316 ◽  
pp. 1717-1720
Author(s):  
Li Du ◽  
Wei Wang ◽  
Zhi Yong Song ◽  
Jie Xiong Ding

Thin-walled parts are widely used in aerospace engineering. For their complexity under loading and the higher shape precision, it’s difficult for their manufacturing on high speed machine. In order to understand manufacture process, characteristic of aviation part in high speed machining is investigated. Error sources on parts are classified and the maximum error, dynamic errors are studied on its main influence factors, such as cutting force and vibration. Finally, useful method on cutting test part is proposed, which can observe and control dynamic accuracy of aviation part and ensure effective manufacture.


Sign in / Sign up

Export Citation Format

Share Document