Non-destructive inspection of the change of the microstructure in Ni-base superalloy in the air by using reflectance spectrum analysis of visible light

2021 ◽  
Vol 2021.56 (0) ◽  
pp. 138_paper
Author(s):  
Shin KASAMA ◽  
Ken SUZUKI
Author(s):  
Shin Kasama ◽  
Ken Suzuki ◽  
Hideo Miura

Abstract Thermal power generation is required to be highly efficient due to concerns such as environment and energy problems. In order to improve its efficiency, it is thermodynamically essential to increase operating temperature. In addition, since thermal power generation is expected to control its output to be coexistent with renewable energies of which output varies frequently depending on weather, not only simple fatigue or creep load but also creep-fatigue load is applied to its component because it is required to assure the safe and stable energy supply under random output of the renewable energies. Since the effective lifetime of heat-resistant alloys decreases drastically under creep-fatigue load, however, it is very important to develop a non-destructive inspection method which can detect the degradation of the crystallinity of the alloys such as local plastic deformation, local oxidation, and local change of micro texture (segregation/precipitation). In this research, the reflectance spectrum analysis of the component elements was applied to the observation of the change in the local crystallinity of Ni-base superalloy (Alloy 617). A creep-fatigue test was applied to a small specimen, and the change of the local reflectance spectrum was measured under the irradiation of a white light. It was confirmed that the change of the surface roughness in the damaged area caused by plastic deformation and the growth of the surface oxide were successfully observed by the spectrum analysis. In addition, the distribution of fine carbides and nitrides was visualized by the spectrum analysis. It was also confirmed that a thick Cr-rich oxide layer grew at the grain boundaries only in the heavily damaged area. Finally, it was concluded that the creep-fatigue damage was clearly visualized by the spectrum analysis.


2012 ◽  
Vol 110 (1) ◽  
pp. 9-17 ◽  
Author(s):  
N. Oto ◽  
S. Oshita ◽  
S. Kawagishi ◽  
Y. Makino ◽  
Y. Kawagoe ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
F. Fazlali ◽  
S. Gorji Kandi

Abstract Employing an economical and non-destructive method for identifying pigments utilized in artworks is a significant aspect for preserving their antiquity value. One of the non-destructive methods for this purpose is spectrophotometry, which is based on the selected absorption of light. Mathematical descriptive methods such as derivatives of the reflectance spectrum, the Kubelka–Munk function and logarithm have been employed for the characterization of the peak features corresponding to the spectrophotometric data. In the present study, the mentioned mathematical descriptive methods were investigated with the aim to characterize the constituents of an Iranian artwork but were not efficient for the samples. Therefore, inverse tangent derivative equation was developed on spectral data for the first time, providing considerable details in the profile of reflectance curves. In the next part, to have a simpler and more practical method it was suggested to use filters made up of pure pigments. By using these filters and placing them on the samples, imaging was done. Then, images of samples with and without filter were evaluated and pure pigments were distinguished. The mentioned methods were also used to identify pigments in a modern Iranian painting specimen. The results confirmed these methods with reliable answers indicating that physical methods (alongside chemical methods) can also be effective in determining the types of pigments.


Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Jinfeng Zhu ◽  
Xizhao Chen ◽  
Yinong Xie ◽  
Jun-Yu Ou ◽  
Huanyang Chen ◽  
...  

AbstractOptical measurement of materials at the nanoscale is important for nanotechnology. Various plasmonic nanorulers have been studied for measuring nanoscale distance and orientation of materials, but they lack the capability to contain and measure nanoscale volumes, especially for liquid or soft materials. Here, we demonstrate the use of imprinted plasmonic volumetric nanocylinders, which act as nanoscale graduated cylinders and facilitate nanomaterial measurement via visible light. Our theoretical and experimental achievements illuminate a promising method for non-destructive, low-cost and fast measurement of material volume changes at the nanoscale, which will benefit the fields of analytical chemistry, nanofabrication and biomedical sensing.


Sign in / Sign up

Export Citation Format

Share Document