859 Dynamic Characteristics of Herringbone Grooved Aerodynamic Journal Bearings with Considering Centrifugal Growth of Ultra-High-Speed Rotors

2007 ◽  
Vol 2007 (0) ◽  
pp. 239-240
Author(s):  
Jun TOMIOKA ◽  
Norifumi MIYANAGA
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110180
Author(s):  
Ruzhong Yan ◽  
Haojie Zhang

This study adopts the DMT(dynamic mesh technology) and UDF(user defined functions) co-simulation method to study the dynamic characteristics of aerostatic thrust bearings with equalizing grooves and compare with the bearing without equalizing groove under high speed or ultra high speed for the first time. The effects of air film thicness, supply pressure, rotation speed, perturbation amplitude, perturbation frequency, and cross section of the groove on performance characteristics of aerostatic thrust bearing are thoroughly investigated. The results show that the dynamic stiffiness and damping coefficient of the bearing with triangular or trapezoidal groove have obvious advantages by comparing with that of the bearing without groove or with rectangular groove for the most range of air film thickness, supply pressure, rotation speed, perturbation amplitude, especially in the case of high frequency, which may be due to the superposition of secondary throttling effect and air compressible effect. While the growth range of dynamic stiffness decreases in the case of high or ultra-high rotation speed, which may be because the Bernoulli effect started to appear. The perturbation amplitude only has little influence on the dynamic characteristic when it is small, but with the increase of perturbation amplitude, the influence becomes more obvious and complex, especially for downsized aerostatic bearing.


1994 ◽  
Vol 116 (4) ◽  
pp. 672-680 ◽  
Author(s):  
H. Hashimoto ◽  
M. Mongkolwongrojn

Hydrodynamic bearings are generally used for a long term, so the bearing surfaces may be roughened for many reasons such as wear, impulsive damage, foreign particles, cavitation erosion, rust, and so on. Under the turbulent operating conditions of high speed bearings, the surface roughness may result in considerable increase in both film pressure and temperature. This paper describes an adiabatic approximate solution for the static and dynamic characteristics of 180 deg partial journal bearings with homogeneous surface roughness. Applying the modified lubrication equation and energy equation, considering the combined effects of turbulence and surface roughness, to the finite width 180 deg partial journal bearings, the static and dynamic characteristics such as pressure and temperature distributions, Sommerfeld number, attitude angle, spring and damping coefficients and whirl onset velocity are obtained numerically. In the numerical analysis of the temperature distribution, adiabatic boundary conditions are assumed and then the heat transfer effect to the journal and bearing-bush surfaces is omitted. The numerical results are indicated in graphic form for various relative roughness under the mean Reynolds number of Re = 5000 and 10,000. Moreover, some numerical results of static characteristics are compared with the experimental results.


Author(s):  
Siyu Gao ◽  
Kai Cheng ◽  
Shijin Chen ◽  
Hui Ding ◽  
Hongya Fu

Aerostatic bearings are the critical parts of ultra-high speed spindles applied to precision milling, grinding, and other precision engineering applications. In this paper, the computational design and analysis of aerostatic journal bearings at ultra-high speed spindles are investigated particularly in light of the nonlinear compressible Reynolds equation and the associated computational analysis and algorithms using the finite element method-based Galerkin weighted residual method. The steady-state static and dynamic behaviors of aerostatic journal bearings are systematically studied, including pressure distributions, load capacity, stiffness, attitude angle, and volume flow rate under conditions of various operating speeds and eccentricity ratios. The coupling of the aerostatic and aerodynamic effects within ultra-high speed aerostatic journal bearings is further explored. The obtained results are formulated as design guidelines for aerostatic journal bearings applied to air-bearing spindles operating in high precision and ultra-high rotational speeds.


Author(s):  
Tian Jiale ◽  
Yu Lie ◽  
Zhou Jian

The stable working condition of high speed, heavy loaded rotating machinery depends strongly on the stability provided by the journal bearing. Tilting pad journal bearings (TPJB) are widely used under such situation due to their inherent stability performance. However, because of the complexity of the TPJB structure, obtaining a reliable prediction of the journal bearing’s dynamic characteristics has always been a challenging task. In this paper, a theoretical analysis has been done to investigate the dynamic performance of a 4 pad TPJB with ball-in-socket pivot, emphasizing on the frequency dependency due to pivot flexibility. The analytical model containing the complete set of dynamic coefficients of the TPJB is built and the pivot stiffness is calculated and used to evaluate the equivalent dynamic coefficients of the bearing. In general, at lower perturbation frequency, the equivalent stiffness and damping increase with frequency. While for higher perturbation frequency, the dynamic coefficients are nearly independent of the frequency. Moreover, the results also show the limit value of the dynamic characteristics of the TPJB when the perturbation frequency is set to 0+ and ∞.


Sign in / Sign up

Export Citation Format

Share Document