scholarly journals Thermal Stresses in a Hollow Cylinder with a Transient Heat Source on the Inner Surface

1965 ◽  
Vol 31 (225) ◽  
pp. 704-714
Author(s):  
Takashi KOIZUMI ◽  
Ichiro NAKAHARA

A hollow cylinder having cylindrical hole at the center has been examined under the temperature variation condition. This composition deals with study of temperature distribution in thin hollow cylinder and corresponding stresses. The author has worked to carry out the transient thermo elastic problem for evaluation of temperature distribution, displacement and thermal stresses of a thin hollow cylinder. The known non homogeneous boundary conditions are applied to obtain the solution of this problem. The integral transform technique yields the solution to the problem. The analysis contains an infinite series. The variation of said parameters observed and analyzed by using necessary graphs


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
M. Jabbari ◽  
A. H. Mohazzab ◽  
A. Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to the power functions of radial direction. Temperature distribution is symmetric and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of a hollow cylinder. The thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.


Author(s):  
Mohsen Jabbari ◽  
Amir Hossein Mohazzab ◽  
Ali Bahtui

This paper presents the analytical solution of one-dimensional mechanical and thermal stresses for a hollow cylinder made of functionally graded material. The material properties vary continuously across the thickness, according to power functions of radial direction. Temperature distribution is symmetric, and transient. The thermal boundary conditions may include conduction, flux, and convection for inside or outside of hollow cylinder. Thermoelasticity equation is transient, including the moving heat source. The heat conduction and Navier equations are solved analytically, using the generalized Bessel function. A direct method of solution of Navier equation is presented.


Author(s):  
Magdalena Jaremkiewicz

Purpose The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements. Design/methodology/approach An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy. Findings Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results. Originality/value The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Yujia Sun ◽  
Xiaobing Zhang

The purpose of this paper is to study the transient temperature responses of a hollow cylinder subjected to periodic boundary conditions, which comprises with a short heating period (a few milliseconds) and a relative long cooling period (a few seconds). During the heating process, the inner surface is under complex convection heat transfer condition, which is not so easy to approximate. This paper first calculated the gas temperature history and the convective heat transfer coefficient history between the gas flow and the inner surface and then they were applied to the inner surface as boundary conditions. Finite element analysis was used to solve the transient heat transfer equations of the hollow cylinder. Results show that the inner surface is under strong thermal impact and large temperature gradient occurs in the region adjacent to the inner surface. Sometimes chromium plating and water cooling are used to relief the thermal shock of a tube under such thermal conditions. The effects of these methods are analyzed, and it indicates that the chromium plating can reduce the maximum temperature of the inner surface for the first cycle during periodic heating and the water cooling method can reduce the growth trend of the maximum temperature for sustained conditions. We also investigate the effects of different parameters on the maximum temperature of the inner surface, like chromium thickness, water velocity, channel diameter, and number of cooling channels.


Sign in / Sign up

Export Citation Format

Share Document