scholarly journals Experimental Investigation of a Two Stage Transonic Axial-Flow Compressor

1973 ◽  
Vol 39 (324) ◽  
pp. 2413-2424
Author(s):  
Takeshi YAMANE
Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

A bend skewed casing treatment was designed, to study the influence of one of its geometrical parameter porosity on the stable performance of single stage transonic axial flow compressor. The compressor was designed for the stage total-to-total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at corrected design speed of 12930 RPM. Bend skewed casing treatment has an axial inlet segment till 50% of the total length and rear segment that is skewed by 45° in the direction of the rotor tip section stagger. Both the sections were oriented at a skew angle of 45° to the radial plane such that the flow exiting the slot is in counter-clockwise direction to that of the rotor direction. The casing treatment slot width was equal to the maximum thickness of the rotor blades. Three casing treatment configurations were identified for the current experimental investigation. All the treatment geometries considered for the experimental research have lower porosities than reported in the open literatures. The effect of the porosity parameter on the performance of transonic compressor stage was evaluated at two axial coverages of 20% and 40% relative to the rotor tip axial chord. Performance maps were obtained for the solid casing and casing treatment with three different porosities. Comparative studies were carried out and experimental results showed a maximum of 65% improvement in the stable operating range of the compressor for one of the treatment configurations. It was also observed that the stable operating range of the compressor increases with an increase in the casing treatment porosity. All the casing treatment configurations showed that the compressor stall occurs at lower mass flows as compared to the solid casing. Compressor stage peak efficiency shows significant degradations with increase in the porosity as compared to solid casing. Detailed blade element performances were also obtained using calibrated multi-hole aerodynamic probe. Comparative variations of flow parameters like absolute flow angle, Mach number were studied at full flow and near stall conditions for the solid casing and casing treatment configurations. Hot wire measurements show very high fluctuation in the inlet axial velocity in the presence of solid casing as compared to casing treatments. Experimental investigation revealed that the porosity of the casing treatments has strong influence on the transonic compressor stage performance.


1996 ◽  
Author(s):  
Katsushi Nagai ◽  
Kazuaki Ikesawa ◽  
Takao Sugimoto ◽  
Toshinao Tanaka ◽  
Hiroshi Umino ◽  
...  

A highly loaded two stage transonic axial flow compressor, which forms a front stages of a multi stage compressor for industrial gas turbines, has been designed and tested. Overall pressure ratio is 2.25 and the first stage rotor tip Mach number is 1.15. Two airfoil types, Double Circular Arc airfoil and Multi Circular Arc airfoil, were designed for a transonic rotor blade under the same condition. MCA blade design method was devised and introduced. The blade design relied heavily on CFD techniques using a Euler code and a Navier Stokes code to cope with a precise treatment. The rig test was conducted by our compressor test facility to verify a validity of the transonic compressor design method and to compare the performance of the DCA and the MCA airfoils. This report describes the aerodynamic design and the test results as well as the test facility and instrumentation.


Author(s):  
W. Tabakoff

Turbines and compressors operating in polluted atmosphere with solid particles are subjected to performance deterioration. This paper presents an investigation carried out on two-stage gas turbine with blunt leading edge blades and on a single-stage axial flow compressor to study the effects of particulates and erosion on performance deterioration.


Sign in / Sign up

Export Citation Format

Share Document