scholarly journals Transient Thermal Stresses in Finite Hollow Circular Cylinder with a Heat Transfer on its Surfaces

1977 ◽  
Vol 43 (365) ◽  
pp. 38-45 ◽  
Author(s):  
Naotake NODA ◽  
Yoitiro TAKEUTI ◽  
Kanzi MURASAWA
Author(s):  
Alex Mayes ◽  
Phillip Wiseman ◽  
Kshitij P. Gawande

Abstract American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF, Subparagraph NF-3121.11 does not require that thermal stresses in supports be evaluated. Historically, pipe support engineers have not been concerned with thermal stresses of pipe and component supports, but determining material temperature limits and allowable stresses have been a major role in designing and analyzing supports. Thus, heat transfer is often investigated in finding the temperature of pipe supports and parts of pipe supports that are not in direct contact with pipe or pipe components. There are also other Codes and standards that permit a reduction of temperature away from the outer surface of pipe or pipe components. In some but not all cases, Codes and standards explicitly address reduction of temperature for applications of utilizing thermal insulation. Additionally, the temperature distribution is established by specific geometrical parameters and their respective equations for employment by the pipe support engineer. These reductions are explored by utilizing fundamentals of heat transfer. Additionally, steady-state and transient thermal Finite Element Analyses (FEA) are used to establish computational models of simple geometric bodies in a range of atmospheric conditions. The effects of insulation on the thermal distribution are also represented through closed form solutions and FEA. The results of these analyses allow for assessment of, and recommendations for, the treatment of temperature reduction in Codes and standards.


Sign in / Sign up

Export Citation Format

Share Document