scholarly journals An Analysis of Impact Responses of Orthotropic Laminated Plate by Approximated Three-Dimensional Theory.

1993 ◽  
Vol 59 (559) ◽  
pp. 763-768
Author(s):  
Joong Suk Kook ◽  
Hiroyuki Matsumoto
1971 ◽  
Vol 38 (1) ◽  
pp. 231-238 ◽  
Author(s):  
C. T. Sun

A two-dimensional theory for laminated plates is deduced from the three-dimensional continuum theory for a laminated medium. Plate-stress equations of motion, plate-stress-strain relations, boundary conditions, and plate-displacement equations of motion are presented. The governing equations are employed to study the propagation of harmonic waves in a laminated plate. Dispersion curves are presented and compared with those obtained according to the three-dimensional continuum theory and the exact analysis. An approximate solution for flexural motions obtained by neglecting the gross and local rotatory inertia terms is also discussed.


Author(s):  
David J. Steigmann

This chapter develops two-dimensional membrane theory as a leading order small-thickness approximation to the three-dimensional theory for thin sheets. Applications to axisymmetric equilibria are developed in detail, and applied to describe the phenomenon of bulge propagation in cylinders.


2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


Sign in / Sign up

Export Citation Format

Share Document