Theory of Laminated Plates

1971 ◽  
Vol 38 (1) ◽  
pp. 231-238 ◽  
Author(s):  
C. T. Sun

A two-dimensional theory for laminated plates is deduced from the three-dimensional continuum theory for a laminated medium. Plate-stress equations of motion, plate-stress-strain relations, boundary conditions, and plate-displacement equations of motion are presented. The governing equations are employed to study the propagation of harmonic waves in a laminated plate. Dispersion curves are presented and compared with those obtained according to the three-dimensional continuum theory and the exact analysis. An approximate solution for flexural motions obtained by neglecting the gross and local rotatory inertia terms is also discussed.

1951 ◽  
Vol 18 (1) ◽  
pp. 31-38 ◽  
Author(s):  
R. D. Mindlin

Abstract A two-dimensional theory of flexural motions of isotropic, elastic plates is deduced from the three-dimensional equations of elasticity. The theory includes the effects of rotatory inertia and shear in the same manner as Timoshenko’s one-dimensional theory of bars. Velocities of straight-crested waves are computed and found to agree with those obtained from the three-dimensional theory. A uniqueness theorem reveals that three edge conditions are required.


1979 ◽  
Vol 23 (02) ◽  
pp. 115-122 ◽  
Author(s):  
M. Cengiz Dökmeci

Various forms of variational principles are derived for the three-dimensional theory of elastodynamics. The continuity requirements on the fields of stresses or strains and/or displacements are relaxed through Friedrichs's transformation. Thus, the generalized forms of certain types of earlier variational principles' are systematically constructed using a basic principle of physics. The variational principles derived herein are shown to generate, as the appropriate Euler equations, the complete set of the governing equations of linear elastodynamics, that is, the stress equations of motion, the strain displacement relations, the mixed natural boundary conditions, the constitutive equations, the natural initial conditions, and the jump conditions. Similarly, generalized variational principles are established for the nonlinear theory of elastodynamics, for the incremental motions in linear elasticity, and for an elastic Cosserat continuum, as well.


1988 ◽  
Vol 78 (1) ◽  
pp. 109-121
Author(s):  
Donald V. Helmberger ◽  
John E. Vidale

Abstract We present a scheme for generating synthetic point-source seismograms for shear dislocation sources using line source (two-dimensional) theory. It is based on expanding the complete three-dimensional solution of the wave equation expressed in cylindrical coordinates in an asymptotic form which provides for the separation of the motions into SH and P-SV systems. We evaluate the equations of motion with the aid of the Cagniard-de Hoop technique and derive close-formed expressions appropriate for finite-difference source excitation.


Author(s):  
David J. Steigmann

This chapter develops two-dimensional membrane theory as a leading order small-thickness approximation to the three-dimensional theory for thin sheets. Applications to axisymmetric equilibria are developed in detail, and applied to describe the phenomenon of bulge propagation in cylinders.


2017 ◽  
Vol 9 (6) ◽  
pp. 1485-1505
Author(s):  
Lingchang Meng ◽  
Fengming Li

AbstractThe nonlinear transverse vibrations of ordered and disordered two-dimensional (2D) two-span composite laminated plates are studied. Based on the von Karman's large deformation theory, the equations of motion of each-span composite laminated plate are formulated using Hamilton's principle, and the partial differential equations are discretized into nonlinear ordinary ones through the Galerkin's method. The primary resonance and 1/3 sub-harmonic resonance are investigated by using the method of multiple scales. The amplitude-frequency relations of the steady-state responses and their stability analyses in each kind of resonance are carried out. The effects of the disorder ratio and ply angle on the two different resonances are analyzed. From the numerical results, it can be concluded that disorder in the length of the two-span 2D composite laminated plate will cause the nonlinear vibration localization phenomenon, and with the increase of the disorder ratio, the vibration localization phenomenon will become more obvious. Moreover, the amplitude-frequency curves for both primary resonance and 1/3 sub-harmonic resonance obtained by the present analytical method are compared with those by the numerical integration, and satisfactory precision can be obtained for engineering applications and the results certify the correctness of the present approximately analytical solutions.


1994 ◽  
Vol 47 (10) ◽  
pp. 501-516 ◽  
Author(s):  
Kostas P. Soldatos

There is an increasing usefulness of exact three-dimensional analyses of elastic cylinders and cylindrical shells in composite materials applications. Such analyses are considered as benchmarks for the range of applicability of corresponding studies based on two-dimensional and/or finite element modeling. Moreover, they provide valuable, accurate information in cases that corresponding predictions based on that later kind of approximate modeling is not satisfactory. Due to the complicated form of the governing equations of elasticity, such three-dimensional analyses are comparatively rare in the literature. There is therefore a need for further developments in that area. A survey of the literature dealing with three-dimensional dynamic analyses of cylinders and open cylindrical panels will serve towards such developments. This paper presents such a survey within the framework of linear elasticity.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1401 ◽  
Author(s):  
Sorin Vlase ◽  
Adrian Eracle Nicolescu ◽  
Marin Marin

In classical mechanics, determining the governing equations of motion using finite element analysis (FEA) of an elastic multibody system (MBS) leads to a system of second order differential equations. To integrate this, it must be transformed into a system of first-order equations. However, this can also be achieved directly and naturally if Hamilton’s equations are used. The paper presents this useful alternative formalism used in conjunction with the finite element method for MBSs. The motion equations in the very general case of a three-dimensional motion of an elastic solid are obtained. To illustrate the method, two examples are presented. A comparison between the integration times in the two cases presents another possible advantage of applying this method.


1997 ◽  
Vol 119 (4) ◽  
pp. 635-640 ◽  
Author(s):  
Le-Chung Shiau ◽  
Teng-Yuan Wu

Free vibration behavior of buckled composite plates are studied by using a high precision triangular plate element. This element is developed based on a simplified high order plate theory and von Ka´rma´n large deformation assumptions. The nonlinear governing equations of motion for the plates is linearized into two sets of equations by assuming small amplitude vibration of the laminates about its buckled static equilibrium profile. Results show that, in the postbuckling regime, the fundamental mode may be shifted from the first mode to the second due to squeezing effect of the in-plane force on the plate. For plate with certain boundary conditions, the natural frequency may have a sudden jump due to buckle pattern change of the plate in the postbuckling regime.


Sign in / Sign up

Export Citation Format

Share Document