scholarly journals Case Study by Nonlinear FEM Analysis for Impact Compression Fatigue Damage in Polypropylene Type Elastomer Damper.

1999 ◽  
Vol 65 (633) ◽  
pp. 1075-1080
Author(s):  
Takeshi OSHIKUBO ◽  
Hideto SUZUKI ◽  
Masashi NAKAMURA
Author(s):  
Xiaoli Jiang ◽  
C. Guedes Soares

The present paper focus on the residual strength of pitted mild steel rectangular plate under biaxial compression. This paper aims to propose a general and practical formula to predict the residual strength of pitted rectangular plates under biaxial compression starting from the classic formula for intact rectangular plates and assessing whether it can be applicable to pitted plates, where the degree of pitting corrosion is modelled as one key parameter. Firstly, the numerical model is verified with an existing case study. Afterwards, a series of nonlinear FEM analysis are performed, changing geometrical attributes of both pits and plates, i.e., the radius and location of pits and the slenderness of plates. Based on those simulation results, it is found that the classic formula for intact rectangular plates can be applied reasonably well for pitting corroded plates. A unique parameter DOP (degree of pitting), which is easily determined, is employed to evaluate the effect of pitting corrosion with adequately accuracy and without bias to either longitudinal or transverse compressive stress. The proposed formula can provide guidance during the process of ship structural maintenance decision-making and strength reassessment conveniently.


Author(s):  
Samuel Kanner ◽  
Bingbin Yu

In this research, the estimation of the fatigue life of a semi-submersible floating offshore wind platform is considered. In order to accurately estimate the fatigue life of a platform, coupled aerodynamic-hydrodynamic simulations are performed to obtain dynamic stress values. The simulations are performed at a multitude of representative environmental states, or “bins,” which can mimic the conditions the structure may endure at a given site, per ABS Floating Offshore Wind Turbine Installation guidelines. To accurately represent the variety of wind and wave conditions, the number of environmental states can be of the order of 103. Unlike other offshore structures, both the wind and wave conditions must be accounted for, which are generally considered independent parameters, drastically increasing the number of states. The stress timeseries from these simulations can be used to estimate the damage at a particular location on the structure by using commonly accepted methods, such as the rainflow counting algorithm. The damage due to either the winds or the waves can be estimated by using a frequency decomposition of the stress timeseries. In this paper, a similar decoupled approach is used to attempt to recover the damages induced from these coupled simulations. Although it is well-known that a coupled, aero-hydro analysis is necessary in order to accurately simulate the nonlinear rigid-body motions of the platform, it is less clear if the same statement could be made about the fatigue properties of the platform. In one approach, the fatigue damage equivalent load is calculated independently from both scatter diagrams of the waves and a rose diagram of the wind. De-coupled simulations are performed to estimate the response at an all-encompassing range of environmental conditions. A database of responses based on these environmental conditions is constructed. The likelihood of occurrence at a case-study site is used to compare the damage equivalent from the coupled simulations. The OC5 platform in the Borssele wind farm zone is used as a case-study and the damage equivalent load from the de-coupled methods are compared to those from the coupled analysis in order to assess these methodologies.


Author(s):  
J. Chróścielewski ◽  
S. Burzyński ◽  
A. Sabik ◽  
B. Sobczyk ◽  
W. Witkowski

2016 ◽  
Vol 62 (4) ◽  
pp. 187-200
Author(s):  
K. Żółtowski ◽  
P. Kalitowski

AbstractThis article deals with the problem of determining the resistance of end-plate connections. A nonlinear FEM model of the joint was constructed in order to predict its carrying capacity. A standard code procedure was done as well. The analyses have been done to assess atypical end-plate joints designed and constructed as a part of roof structures.


2001 ◽  
Author(s):  
Aurelio Soma ◽  
Francesco De Bona ◽  
A. Gugliotta ◽  
E. Mola
Keyword(s):  

2021 ◽  
Author(s):  
Felix C. Mehlan ◽  
Amir R. Nejad ◽  
Zhen Gao

Abstract In this article a novel approach for the estimation of wind turbine gearbox loads with the purpose of online fatigue damage monitoring is presented. The proposed method employs a Digital Twin framework and aims at continuous estimation of the dynamic states based on CMS vibration data and generator torque measurements from SCADA data. With knowledge of the dynamic states local loads at gearbox bearings are easily determined and fatigue models are be applied to track the accumulation of fatigue damage. A case study using simulation measurements from a high-fidelity gearbox model is conducted to evaluate the proposed method. Estimated loads at the considered IMS and HSS bearings show moderate to high correlation (R = 0.50–0.96) to measurements, as lower frequency internal dynamics are not fully captured. The estimated fatigue damage differs by 5–15 % from measurements.


2019 ◽  
Vol 292 ◽  
pp. 191-196 ◽  
Author(s):  
Tomáš Augustín ◽  
Ľudovít Fillo ◽  
Jaroslav Halvonik

Experimental programs focused on the issues related to the flat slabs still attract the attention of the scientists around the world. At the Central Laboratories of STU in Bratislava, together 8 fragments of the flat slabs were tested, focusing on the influence of the openings on the punching resistance. The two reference specimens were without openings and the others had two symmetrically placed openings. The openings were moved from the face of the column in multiples of the effective depth (0d, 1d, 2d). For the assessment of the tests, the models introduced in the relevant standards and codes were applied. The experimental results were also used for NFEM model calibration. The paper will deal with comparison of the theoretical and experimental results as well as with non-linear analysis that was performed in the ATENA FEM program, with the goal to obtain the most realistic behaviour of the flat slabs with openings. The material properties used in the analysis were obtained from the laboratory tests.


Sign in / Sign up

Export Citation Format

Share Document