scholarly journals Heat transfer in nucleate boiling outside horizontal tube bundles. 2nd report Prediction for tube bundle effect.

1987 ◽  
Vol 53 (486) ◽  
pp. 528-536 ◽  
Author(s):  
Yasunobu FUJITA ◽  
Haruhiko OHTA ◽  
Keisuke YOSHIDA ◽  
Sumitomo HIDAKA
1990 ◽  
Vol 112 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Y. A. Hassan ◽  
T. K. Blanchat

A RELAP5/MOD2 computer code model for a once-through steam generator has been developed. The calculated heat transfer in the nucleate boiling flow was underpredicted as shown by a predicted superheat of only 11°C (20°F), whereas plant values range from 22–30°C (40–60°F). Existing heat transfer correlations used in thermal-hydraulic computer codes do not provide accurate predictions of the measurement-derived secondary convective heat transfer coefficients for steam generators because they were developed for flow inside tubes, not tube bundles. The RELAP5/MOD2 flow regime map was modified to account for flow across bundles. This modified flow regime map predicts better transition criteria between bubbly-to-slug and slug-to-annular flow. Consequently, improved saturated conditions for the fluid flow at the entrance to the boiler were obtained. A modified Chen-type heat transfer correlation was developed to predict the boiling heat transfer for steam generator tube bundle geometries. This correlation predicts better superheat.


2014 ◽  
Vol 54 (7) ◽  
pp. 1809-1818 ◽  
Author(s):  
Shengqiang Shen ◽  
Hua Liu ◽  
Luyuan Gong ◽  
Yong Yang ◽  
Rui Liu

1993 ◽  
Vol 6 (3) ◽  
pp. 259-271 ◽  
Author(s):  
J.-T. Hsu ◽  
C.-S. Lin ◽  
M.-K. Jensen

Author(s):  
Guangyao Lu ◽  
Junsheng Ren ◽  
Guisheng Zhao ◽  
Wenyuan Xiang ◽  
Huaning Ai

Experiments are carried out to investigate the Onset of Nucleate Boiling (ONB) of refrigerant R-113 through vertical and inclined tube-bundle channels. Several methods are adopted to ascertain ONB in the experiments, and their differences are analyzed. The experiments show that the results of ONB estimation from the visualization experiment, ONB estimation from the wall temperature and that from the heat transfer coefficient are uniform. The influences of heat flux, mass flow rate, the geometric dimensions and inclination angle of the tube-bundle channels on the ONB height are explored in detail. On the foundation of the comparisons and analyses, an equation is put forward for calculating the ONB height in tube-bundle channels, which has a good accordance with the experimental results.


2015 ◽  
Vol 773-774 ◽  
pp. 363-367
Author(s):  
Azmahani Sadikin ◽  
Norasikin Mat Isa

The vertical single-phase flow was studied on the shell side of a horizontal tube bundle. In the present study, CFX version 14.0 from ANSYS was used to predict the flow regimes in the 19 mm diameter in staggered configuration with a pitch to diameter ratio of 1.32. The simulations were undertaken to inform on how the fluid flowed within the tube passages. The results show that the tube bundle arrangement in a heat exchanger does effect to the flow separation and re-attachment points. This is consistent with other published data.


Author(s):  
A. V. Morozov ◽  
O. V. Remizov ◽  
A. A. Tsyganok

The experimental investigations of non-condensable gases effect on the steam condensation inside multirow horizontal tube bundle of heat exchanger under heat transfer to boiling water were carried out at the large-scale test facility in the Institute for Physics and Power Engineering (IPPE). The experiments were carried out for natural circulation conditions in primary and secondary circuits of the facility at primary circuit steam pressure of Ps1 = 0.34 MPa. The experimental heat exchanger’s tube bundle consists of 248 horizontal coiled tubes arranged in 62 rows. Each row consists of 4 stainless steel tubes of 16 mm in outer diameter, 1.5 mm in wall thickness and of 10.2 m in length. The experimental heat exchanger was equipped with more than 100 thermocouples enabling the temperatures of primary and secondary facility circuits to be controlled in both tube bundle and in the inter-tubular space. The non-condensable gases with different density — nitrogen and helium were used in the experiments. The volumetric content of gases in tube bundle amounted to ε = 0.49. The empirical correlation for the prediction of the relative heat transfer coefficient k/k0 = f (ε) for steam condensation in steam-gas mixture was obtained.


Sign in / Sign up

Export Citation Format

Share Document