scholarly journals Measurement of thickness of liquid film formed on a heated surface in high heat flux saturation boiling. (1st Report, A method to measure the thickness of the liquid film and the results in pool boiling).

1989 ◽  
Vol 55 (513) ◽  
pp. 1392-1396
Author(s):  
Yoshihiko HARAMURA
1994 ◽  
Vol 116 (1) ◽  
pp. 167-172 ◽  
Author(s):  
S. L. Lee ◽  
Z. H. Yang ◽  
Y. Hsyua

Cooling requirements in modern industrial applications, such as the removal of heat from electronic equipments, often demand the simultaneous attainment of a high heat flux and a low and relatively uniform and steady temperature of the heated surface to be cooled. The conventional single-phase convection cooling obviously cannot be expected to function adequately, since the heat flux there is directly proportional to the temperature difference between the heated surface and the surrounding medium. To maintain a high heat flux, the temperature of the heated surface usually must be kept at a high level. An attractive alternative is cooling by a spray, which takes advantage of the significant latent heat of evaporation of the liquid. However, in conventional industrial spray coolings, such as in the case of the cooling tower of a power plant, the temperature of the heated surface usually remains relatively high and is nonuniform and unsteady containing numerous flashy hot spots. In order to optimize the performance of the spray cooling of a heated surface by a mist flow, a clear understanding is required of (1) the dynamic interaction between the droplets and the carrier fluid and (2) the thermal reception of the droplets at the heated surface. It is the dynamic interaction between the phases that is causing the droplets to deposit onto the heated surface. The thermal reception at the heated wall develops mass and heat transfer leading to the mode of cooling of the heated surface. In the present study, an experimental investigation was made of the combination of the dynamic depositional behavior of droplets in a water droplet-air mist flow with the use of a specially designed particle-sizing two-dimensional laser-Doppler anemometer. Also, the heat transfer characteristics at the heated surface were investigated in relation to droplet deposition on the heated surface for wide ranges of droplet size, droplet concentration, mist flow velocity, and heat flux. It was discovered that over a certain suitable range of combination of these parameters, a superbly effective cooling scheme could be established by the evaporation on the outside surface of an ultrathin liquid film. Such a film was formed on the heated surface by the continuous deposition of fine droplets from the mist flow. Under these conditions, the heat flux is primarily related to the evaporation of the ultrathin liquid film on the heated surface and thus depends less on the temperature difference between the heated surf ace and the ambient mist flow. The heated surface is quenched to a low, relatively uniform and steady temperature at a very high level of heat flux. Heat transfer enhancement as high as seven times has been found so far. This effective heat transfer scheme is here termed mist cooling.


1986 ◽  
Vol 29 (12) ◽  
pp. 1953-1961 ◽  
Author(s):  
A.M. Bhat ◽  
J.S. Saini ◽  
R. Prakash

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Jung ◽  
S. J. Kim ◽  
J. Kim

Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.


2019 ◽  
Vol 2 (9) ◽  
pp. 5538-5545 ◽  
Author(s):  
Hangbo Zhao ◽  
Susmita Dash ◽  
Navdeep Singh Dhillon ◽  
Sanha Kim ◽  
Bethany Lettiere ◽  
...  

Author(s):  
Suazlan Mt Aznam ◽  
Shoji Mori ◽  
Kunito Okuyama

Heat removal through pool boiling is limited by the phenomena of critical heat flux (CHF). CHF enhancement is vitally important in order to satisfy demand for the cooling technology with high heat flux in In Vessel Retention (IVR). Various surface modifications of the boiling surface, e.g., integrated surface structures and coating of a micro-porous have been proven to effectively enhance the CHF in saturated pool boiling. We have been proposed a novel method of attaching a honeycomb structured porous plate on a considerably large heater surface. Previous results, by the authors in [1] reported that CHF has been enhanced experimentally up to more than approximately twice that of a plain surface (approximately 2.0 to 2.5 MW/m2) with a diameter of 30 mm heated surface. However, it is necessary to demonstrate the method together with infinite heater surface within laboratory scale. It is important that cooling techniques for IVR could be applicable to a large heated surface as well as remove high heat flux. Objective of this study is to investigate the CHF of honeycomb porous plate and metal solid structure in nanofluid boiling or water boiling on a large heated surface. Water-based nanofluid offers good wettability and capillarity. While metal solid structure is installed on honeycomb porous plate to increase the number of vapor jet. Experimental results of honeycomb porous plate and combination of honeycomb porous plate and metal solid structure in water-based nanofluid boiling shows that CHF is increased up to twice [2] and thrice, respectively compared to plain surface in water boiling. To the best of the author’s knowledge, the highest value (3.1 MW/m2) was obtained for a large heated surface having a diameter of 50 mm which is regarded as infinite heated surface. This demonstrates potential for general applicability to have more safety margin in IVR method.


2016 ◽  
Vol 61 ◽  
pp. 127-139 ◽  
Author(s):  
Jure Petkovsek ◽  
Yi Heng ◽  
Matevz Zupancic ◽  
Henrik Gjerkes ◽  
Franc Cimerman ◽  
...  

Author(s):  
D. V. Zaitsev ◽  
O. A. Kabov

The paper focuses upon shear-driven liquid film evaporative cooling of high-speed computer chips. Thin liquid films may provide very high heat transfer rates, however development of cooling system based on thin film technology requires significant advances in fundamental research. The paper presents new experimental data on flow and breakdown of a liquid film driven by the action of a forced gas flow in a horizontal minichannel (2 mm high), heated from a 22×6.55 mm heater. A map of isothermal flow regimes is plotted and the lengths of smooth region and region of 2D/3D wave occurrence are measured. The scenario of liquid film breakdown under heating is found to differ widely for different flow regimes. It is revealed that the critical heat flux at which film breakdown occurs for a shear-driven liquid film can be several times higher than that for a gravitationally-driven liquid film. This fact makes shear-driven liquid films very promising in high heat flux cooling applications.


2016 ◽  
Vol 108 (23) ◽  
pp. 233901 ◽  
Author(s):  
Lizhan Bai ◽  
Lianpei Zhang ◽  
Guiping Lin ◽  
G. P. Peterson

Sign in / Sign up

Export Citation Format

Share Document