Breakdown of a Locally Heated Liquid Film Shear-Driven in a Minichannel

Author(s):  
D. V. Zaitsev ◽  
O. A. Kabov

The paper focuses upon shear-driven liquid film evaporative cooling of high-speed computer chips. Thin liquid films may provide very high heat transfer rates, however development of cooling system based on thin film technology requires significant advances in fundamental research. The paper presents new experimental data on flow and breakdown of a liquid film driven by the action of a forced gas flow in a horizontal minichannel (2 mm high), heated from a 22×6.55 mm heater. A map of isothermal flow regimes is plotted and the lengths of smooth region and region of 2D/3D wave occurrence are measured. The scenario of liquid film breakdown under heating is found to differ widely for different flow regimes. It is revealed that the critical heat flux at which film breakdown occurs for a shear-driven liquid film can be several times higher than that for a gravitationally-driven liquid film. This fact makes shear-driven liquid films very promising in high heat flux cooling applications.

Author(s):  
Elizaveta Gatapova ◽  
Oleg Kabov

The present work focuses upon shear-driven liquid film evaporative cooling of high heat flux local heater. Thin evaporating liquid films may provide very high heat transfer rates and can be used for cooling of high power microelectronic systems. Thermocapillary convection in a liquid film falling down a locally heated substrate has recently been extensively studied. However, non-uniform heating effects remain only partially understood for shear-driven liquid films. The combined effects of evaporation, thermocapillarity and gas dynamics as well as formation of microscopic adsorbed film have not been studied. The effect of evaporation on heat and mass transfer for 2D joint flow of a liquid film and gas is theoretically and numerically investigated. The convective terms in the energy equations are taken into account. The calculations reveal that evaporation from film surface essential influences on heat removal from local heater. It is shown that the thermal boundary layer plays significant role for cooling local heater by evaporating thin liquid film. Measured by an infrared scanner temperature distribution at the film surface is compared with numerical data. Calculations satisfactorily describe the maximal surface temperature value.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Rongliang Zhou ◽  
Juan Catano ◽  
Tiejun Zhang ◽  
John T. Wen ◽  
Greg J. Michna ◽  
...  

Steady-state modeling and analysis of a two-loop cooling system for high heat flux removal applications are studied. The system structure proposed consists of a primary pumped loop and a vapor compression cycle (VCC) as the secondary loop to which the pumped loop rejects heat. The pumped loop consists of evaporator, condenser, pump, and bladder liquid accumulator. The pumped loop evaporator has direct contact with the heat generating device and CHF must be higher than the imposed heat fluxes to prevent device burnout. The bladder liquid accumulator adjusts the pumped loop pressure level and, hence, the subcooling of the refrigerant to avoid pump cavitation and to achieve high critical heat flux (CHF) in the pumped loop evaporator. The vapor compression cycle of the two-loop cooling system consists of evaporator, liquid accumulator, compressor, condenser and electronic expansion valve. It is coupled with the pumped loop through a fluid-to-fluid heat exchanger that serves as both the vapor compression cycle evaporator and the pumped loop condenser. The liquid accumulator of the vapor compression cycle regulates the cycle active refrigerant charge and provides saturated vapor to the compressor at steady state. The heat exchangers are modeled with the mass, momentum, and energy balance equations. Due to the projected incorporation of microchannels in the pumped loop to enhance the heat transfer in heat sinks, the momentum equation, rarely seen in previous refrigeration system modeling efforts, is included to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Electronic expansion valve, compressor, pump, and liquid accumulators are modeled as static components due to their much faster dynamics compared with heat exchangers. The steady-state model can be used for static system design that includes determining the total refrigerant charge in the vapor compression cycle and the pumped loop to accommodate the varying heat load, sizing of various components, and parametric studies to optimize the operating conditions for a given heat load. The effect of pumped loop pressure level, heat exchangers geometries, pumped loop refrigerant selection, and placement of the pump (upstream or downstream of the evaporator) are studied. The two-loop cooling system structure shows both improved coefficient of performance (COP) and CHF overthe single loop vapor compression cycle investigated earlier by authors for high heat flux removal.


Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


2019 ◽  
Vol 163 ◽  
pp. 114338 ◽  
Author(s):  
Fengze Hou ◽  
Wenbo Wang ◽  
Hengyun Zhang ◽  
Cheng Chen ◽  
Chuan Chen ◽  
...  

Author(s):  
Paul J. Laca ◽  
Richard A. Wirtz

Flow boiling experiments with sub-cooled Isopentane and n-Pentane at 3.0bar pressure assess the utility of compressed copper- and steel-filament screen laminate surface coatings as high performance boiling surfaces. High-speed video show that at high heat flux ebullition is unsteady. Isopentane and n-Pentane are found to produce nearly identical boiling characteristic curves. At the same applied heat flux, the superheat of copper filament coatings are much smaller than the steel filament coating superheats.


Author(s):  
Xiao-Yu Wu ◽  
Dan Huang ◽  
Wei Li ◽  
Guo-Qiang Xu ◽  
Zhi Tao ◽  
...  

Regenerative cooling system is thought to be an effective and practical solution to better thermal management for high heat flux applications. In this paper, we examined the effects of solid particles mixed with fuels on the heat transfer performances of supercritical fuel coolant. Two-step method was applied to prepare Fe3O4-kerosene fluids. Experiments were carried out to study the heat transfer characteristics of fuel-particle mixtures flowing in a vertical tube at supercritical pressures. Results show that there are three different heat transfer mechanisms at the in-, mid- and ex-sections along the tube; increasing the flow rate or the working pressure could enhance the heat transfer performances, yet higher heat flux leads to poorer heat transfer performances. Besides, the addition of solid particles deteriorates the heat transfer performances of the fuel coolant through the modification of inner wall surfaces. As the particle content increases, the heat transfer performance becomes worse.


2015 ◽  
Vol 3 (4) ◽  
pp. 369-391 ◽  
Author(s):  
Nicolas Lamaison ◽  
Jackson Braz Marcinichen ◽  
S. Szczukiewicz ◽  
John R. Thome ◽  
P. Beucher

Sign in / Sign up

Export Citation Format

Share Document