Isothermal Air-Water Two-Phase Up- and Downward Flows in a Vertical Capillary Tube. 2nd Report. Pressure Loss.

1996 ◽  
Vol 62 (598) ◽  
pp. 2136-2143 ◽  
Author(s):  
Akira KARIYASAKI ◽  
Tohru FUKANO ◽  
Akiharu OUSAKA ◽  
Masazumi KAGAWA
2007 ◽  
Vol 2 ◽  
pp. 25-32 ◽  
Author(s):  
Toru SUKAWA ◽  
Tomoya HASEGAWA ◽  
Kenji YOSHIDA ◽  
Isao KATAOKA

Author(s):  
John Wesley Coleman

This paper presents the results of an experimental investigation of two-phase pressure loss of R134a in microchannel headers using various end-cut techniques. Novel experimental techniques and test sections were developed to enable the accurate determination of the minor losses without obfuscating the problem with a lengthwise pressure gradient. This technique represents a departure from approaches used by other investigators that have extrapolated minor losses from air-water experiments and the combined effects of expansion, contraction, deceleration, and lengthwise pressure gradients. Pressure losses were recorded over the entire range of qualities from 100% vapor to 100% liquid. In addition, the tests were conducted for five different refrigerant mass fluxes between 185 kg/m2-s and 785 kg/m2-s using two differnt end-cut techniques. More than 790 data points were recorded to obtain a comprehensive understanding of the effects of mass flux and quality on minor pressure losses. High accuracy instrumentation such as coriolis mass flowmeters, RTDs, pressure transducers, and real-time data analyses were used to ensure accuracy in the results. The results show that many of the commonly used correlations for estimating two-phase pressure losses significantly underpredict the pressure losses found in compact microchannel tube headers. Furthermore, the results show that the end-cut technique can substantially affect the pressure losses in microchannel headers. A new model for estimating the pressure loss in microchannel headers is presented and a comparison of the end-cut techniques on the minor losses is reported.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 842
Author(s):  
Tea-Woo Kim ◽  
Nam-Sub Woo ◽  
Sang-Mok Han ◽  
Young-Ju Kim

The accurate prediction of pressure loss for two-phase slug flow in pipes with a simple and powerful methodology has been desired. The calculation of pressure loss has generally been performed by complicated mechanistic models, most of which require the iteration of many variables. The objective of this study is to optimize the previously proposed simplified slug flow model for horizontal pipes, extending the applicability to turbulent flow conditions, i.e., high mixture Reynolds number and near horizontal pipes. The velocity field previously measured by particle image velocimetry further supports the suggested slug flow model which neglects the pressure loss in the liquid film region. A suitable prediction of slug characteristics such as slug liquid holdup and translational velocity (or flow coefficient) is required to advance the accuracy of calculated pressure loss. Therefore, the proper correlations of slug liquid holdup, flow coefficient, and friction factor are identified and utilized to calculate the pressure gradient for horizontal and near horizontal pipes. The optimized model presents a fair agreement with 2191 existing experimental data (0.001 ≤ μL ≤ 0.995 Pa∙s, 7 ≤ ReM ≤ 227,007 and −9 ≤ θ ≤ 9), showing −3% and 0.991 as values of the average relative error and the coefficient of determination, respectively.


2019 ◽  
Vol 58 (45) ◽  
pp. 20806-20814 ◽  
Author(s):  
Ying Li ◽  
Haitao Li ◽  
Shengnan Chen ◽  
Qirui Ma ◽  
Chang Liu

1994 ◽  
Vol 60 (578) ◽  
pp. 3345-3351 ◽  
Author(s):  
Kazuhisa Wakasugi ◽  
Tomohisa Nakanishi ◽  
Shinji Sakai ◽  
Kazunori Wakai ◽  
Isao Sumida

2017 ◽  
Vol 25 (04) ◽  
pp. 1730004 ◽  
Author(s):  
Mehdi Rasti ◽  
Ji Hwan Jeong

Capillary tubes are widely used as expansion devices in small-capacity refrigeration systems. Since the refrigerant flow through the capillary tubes is complex, many researchers presented empirical dimensionless correlations to predict the refrigerant mass flow rate. A comprehensive review of the dimensionless correlations for the prediction of refrigerants mass flow rate through straight and coiled capillary tubes depending on their geometry and adiabatic or diabatic capillary tubes depending on the flow configurations has been discussed. A comprehensive review shows that most of previous dimensionless correlations have problems such as discontinuity at the saturated lines or ability to predict the refrigerant mass flow rate only for the capillary tube subcooled inlet condition. The correlations suggested by Rasti et al. and Rasti and Jeong appeared to be general and continuous and these correlations can be used to predict the refrigerant mass flow rate through all the types of capillary tubes with wide range of capillary tube inlet conditions including subcooled liquid, two-phase mixture, and superheated vapor conditions.


Sign in / Sign up

Export Citation Format

Share Document