scholarly journals Computation of Gas-Particle Swirling Flows with a Reynolds Stress Model.

1999 ◽  
Vol 65 (633) ◽  
pp. 1591-1598
Author(s):  
Osamu KITAMURA ◽  
Makoto YAMAMOTO

2006 ◽  
Vol 128 (6) ◽  
pp. 1377-1382 ◽  
Author(s):  
Ali M. Jawarneh ◽  
Georgios H. Vatistas

Strongly swirling vortex chamber flows are examined experimentally and numerically using the Reynolds stress model (RSM). The predictions are compared against the experimental data in terms of the pressure drop across the chamber, the axial and tangential velocity components, and the radial pressure profiles. The overall agreement between the measurements and the predictions is reasonable. The predictions provided by the numerical model show clearly the forced and free vortex modes of the tangential velocity profile. The reverse flow (or back flow) inside the core and near the outlet, known from experiments, is captured by the numerical simulations. The swirl number has been found to have a measurable impact on the flow features. The vortex core size is shown to contract with the swirl number which leads to higher pressure drop, higher peak tangential velocity, and deeper radial pressure profiles near the axis of rotation. The adequate agreement between the experimental data and the simulations using RSM turbulence model provides a valid tool to study further these industrially important swirling flows.



Author(s):  
Andrew Escue ◽  
Jie Cui

Swirling flow is a common phenomenon in engineering applications. It has been shown that swirling flow increases heat and mass transfer, and reduces power requirements in certain engineering applications. A numerical study of the swirling flow inside a straight pipe was carried out in the present work with the aid of the commercial CFD code Fluent. Two-dimensional simulations were performed, and two turbulence models were used, namely, the RNG k-ε model and the Reynolds stress model. Results at various swirling numbers were obtained and compared with available experimental data to determine if the numerical method is valid when modeling swirling flows. It has been shown that the RNG k-ε model is in better agreement with experimental velocity profiles for low swirl, while the Reynolds stress model becomes more appropriate as the swirl is increased. However, both turbulence models predict an unrealistic decay of the turbulence quantities for the flows considered here, indicating the inadequacy of such models in simulating developing pipe flows with swirl.



AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 91-98
Author(s):  
Jiang Luo ◽  
Budugur Lakshminarayana


Author(s):  
David Roos Launchbury ◽  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Francesco Del Citto

Abstract In the industrial simulation of flow phenomena, turbulence modeling is of prime importance. Due to their low computational cost, Reynolds-averaged methods (RANS) are predominantly used for this purpose. However, eddy viscosity RANS models are often unable to adequately capture important flow physics, specifically when strongly anisotropic turbulence and vortex structures are present. In such cases the more costly 7-equation Reynolds stress models often lead to significantly better results. Unfortunately, these models are not widely used in the industry. The reason for this is not mainly the increased computational cost, but the stability and convergence issues such models usually exhibit. In this paper we present a robust implementation of a Reynolds stress model that is solved in a coupled manner, increasing stability and convergence speed significantly compared to segregated implementations. In addition, the decoupling of the velocity and Reynolds stress fields is addressed for the coupled equation formulation. A special wall function is presented that conserves the anisotropic properties of the model near the walls on coarser meshes. The presented Reynolds stress model is validated on a series of semi-academic test cases and then applied to two industrially relevant situations, namely the tip vortex of a NACA0012 profile and the Aachen Radiver radial compressor case.







Sign in / Sign up

Export Citation Format

Share Document