Numerical Investigation of Swirling Pipe Flows

Author(s):  
Andrew Escue ◽  
Jie Cui

Swirling flow is a common phenomenon in engineering applications. It has been shown that swirling flow increases heat and mass transfer, and reduces power requirements in certain engineering applications. A numerical study of the swirling flow inside a straight pipe was carried out in the present work with the aid of the commercial CFD code Fluent. Two-dimensional simulations were performed, and two turbulence models were used, namely, the RNG k-ε model and the Reynolds stress model. Results at various swirling numbers were obtained and compared with available experimental data to determine if the numerical method is valid when modeling swirling flows. It has been shown that the RNG k-ε model is in better agreement with experimental velocity profiles for low swirl, while the Reynolds stress model becomes more appropriate as the swirl is increased. However, both turbulence models predict an unrealistic decay of the turbulence quantities for the flows considered here, indicating the inadequacy of such models in simulating developing pipe flows with swirl.

2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Author(s):  
Q Wu ◽  
Q Ye ◽  
G X Meng

This article introduces a new vortex gripper with a diversion body. Vortex gripper, as a pneumatic non-contact handling device, can generate lifting force to hold a workpiece without any contact. In order to predict the characteristics of this new vortex gripper, including pressure distribution on the upper surface of the workpiece, lifting force, supporting stiffness, and flowrate, a computational fluid dynamics study has been carried out. In the vortex cup, air swirling flow is a complex turbulent one; so Reynolds stress model (RSM) was used to describe internal air swirling flow. In addition, an experiment was carried out to study the characteristics of the vortex gripper. When compared with the experimental results, the reliability of numerical simulation results by RSM was verified. The vortex gripper with a diversion body could generate greater lifting force when compared with those designed by Xin et al. with the same air consumption. Therefore, the efficiency of the vortex gripper is improved.


2015 ◽  
Vol 9 (4) ◽  
pp. 482-495 ◽  
Author(s):  
Amani Amamou ◽  
Sabra Habli ◽  
Nejla Mahjoub Saïd ◽  
Philippe Bournot ◽  
Georges Le Palec

2006 ◽  
Vol 128 (6) ◽  
pp. 1377-1382 ◽  
Author(s):  
Ali M. Jawarneh ◽  
Georgios H. Vatistas

Strongly swirling vortex chamber flows are examined experimentally and numerically using the Reynolds stress model (RSM). The predictions are compared against the experimental data in terms of the pressure drop across the chamber, the axial and tangential velocity components, and the radial pressure profiles. The overall agreement between the measurements and the predictions is reasonable. The predictions provided by the numerical model show clearly the forced and free vortex modes of the tangential velocity profile. The reverse flow (or back flow) inside the core and near the outlet, known from experiments, is captured by the numerical simulations. The swirl number has been found to have a measurable impact on the flow features. The vortex core size is shown to contract with the swirl number which leads to higher pressure drop, higher peak tangential velocity, and deeper radial pressure profiles near the axis of rotation. The adequate agreement between the experimental data and the simulations using RSM turbulence model provides a valid tool to study further these industrially important swirling flows.


1999 ◽  
Vol 122 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Robert E. Spall ◽  
Blake M. Ashby

Solutions to the incompressible Reynolds-averaged Navier–Stokes equations have been obtained for turbulent vortex breakdown within a slightly diverging tube. Inlet boundary conditions were derived from available experimental data for the mean flow and turbulence kinetic energy. The performance of both two-equation and full differential Reynolds stress models was evaluated. Axisymmetric results revealed that the initiation of vortex breakdown was reasonably well predicted by the differential Reynolds stress model. However, the standard K-ε model failed to predict the occurrence of breakdown. The differential Reynolds stress model also predicted satisfactorily the mean azimuthal and axial velocity profiles downstream of the breakdown, whereas results using the K-ε model were unsatisfactory. [S0098-2202(00)01601-1]


Author(s):  
G. A. Gerolymos ◽  
I. Vallet

The purpose of this paper is to present a numerical methodology for the computation of complex 3-D turbomachinery flows using advanced multiequation turbulence closures, including full 7-equation Reynolds-stress transport models. A general frame-work describing the turbulence models and possible future improvements is presented. The flow equations are discretized on structured multiblock grids, using an upwind biased (O[Δx3] MUSCL reconstruction) finite-volume scheme. Time-integration uses a local-dual-time-stepping implicit procedure, with internal subiterations. Computational efficiency is achieved by a specific approximate factorization of the implicit subiterations, designed to minimize the computational cost of the turbulence-transport-equations. Convergence is still accelerated using a mean-flow-multigrid full-approximation-scheme method, where multigrid is applied on the mean-flow-variables only. Speed-ups of a factor 3 are obtained using 3 levels of multigrid (fine + 2 coarser grids). Computational examples are presented using several Reynolds-stress model variants (and also a baseline k–ε model), for various turbomachinery configurations, and compared with available experimental measurements.


Author(s):  
Stefan Voigt ◽  
Berthold Noll ◽  
Manfred Aigner

The present paper deals with the detailed numerical simulation of film cooling including conjugate heat transfer. Five different turbulence models are used to simulate a film cooling configuration. The models include three steady and two unsteady models. The steady RANS models are the Shear stress transport (SST) model of Menter, the Reynolds stress model of Speziale, Sarkar and Gatski and a k-ε explicit algebraic Reynolds stress model. The unsteady models are a URANS formulation of the SST model and a scale-adaptive simulation (SAS). The solver used in this study is the commercial code ANSYS CFX 11.0. The results are compared to available experimental data. These data include velocity and turbulence intensity fields in several planes. It is shown that the steady RANS approach has difficulties with predicting the flow field due to the high 3-dimensional unsteadiness. The URANS and SAS simulations on the other hand show good agreement with the experimental data. The deviation from the experimental data in velocity values in the steady cases is about 20% whereas the error in the unsteady cases is below 10%.


Author(s):  
Huitao Yang ◽  
Sumanta Acharya ◽  
Srinath V. Ekkad ◽  
Chander Prakash ◽  
Ron Bunker

Numerical calculations are performed to simulate the tip leakage flow and heat transfer on the GE-E3 High-Pressure-Turbine (HPT) rotor blade. The calculations are performed for a single blade with periodic conditions imposed along the two boundaries in the circumferential-pitch direction. Cases considered are a flat blade tip at three different tip gap clearances of 1%, 1.5% and 2.5% of the blade span. The numerical results are obtained for two different pressure ratios (ratio of inlet total pressure to exit static pressure) of 1.2 and 1.32 and an inlet turbulence level of 6.1%. To explore the effect of turbulence models on the heat transfer results, three different models of increasing complexity and computational effort (standard high Re k-ε model, RNG k-ε and Reynolds Stress Model) are investigated. The predicted tip heat transfer results are compared with the experimental data of Azad [1], and show satisfactory agreement with the data. Hear transfer predictions for all three turbulence models are comparable, and no significant improvements are obtained with the Reynolds-stress model.


2000 ◽  
Vol 122 (4) ◽  
pp. 666-676 ◽  
Author(s):  
R. W. Radomsky ◽  
K. A. Thole

As highly turbulent flow passes through downstream airfoil passages in a gas turbine engine, it is subjected to a complex geometry designed to accelerate and turn the flow. This acceleration and streamline curvature subject the turbulent flow to high mean flow strains. This paper presents both experimental measurements and computational predictions for highly turbulent flow as it progresses through a passage of a gas turbine stator vane. Three-component velocity fields at the vane midspan were measured for inlet turbulence levels of 0.6%, 10%, and 19.5%. The turbulent kinetic energy increased through the passage by 130% for the 10% inlet turbulence and, because the dissipation rate was higher for the 19.5% inlet turbulence, the turbulent kinetic energy increased by only 31%. With a mean flow acceleration of five through the passage, the exiting local turbulence levels were 3% and 6% for the respective 10% and 19.5% inlet turbulence levels. Computational RANS predictions were compared with the measurements using four different turbulence models including the k-ε, Renormalization Group (RNG) k-ε, realizable k-ε, and Reynolds stress model. The results indicate that the predictions using the Reynolds stress model most closely agreed with the measurements as compared with the other turbulence models with better agreement for the 10% case than the 19.5% case. [S0098-2202(00)00804-X]


Sign in / Sign up

Export Citation Format

Share Document