scholarly journals Effect of Cylinder Wall Oil film Thickness on Oil Consumption in Internal Combustion Engine

2004 ◽  
Vol 70 (700) ◽  
pp. 3251-3256 ◽  
Author(s):  
Hideto INAGAKI ◽  
Toshiaki KONOMI
2010 ◽  
Vol 97-101 ◽  
pp. 1239-1242
Author(s):  
De Liang Liu ◽  
Hui Biao Lu ◽  
C.G. Sun

Piston ring-cylinder is one of the most important friction pair of internal combustion engine,the lubricating state between them has decided internal combustion engine lubrication quality. So the theoretical research to the lubricating characteristics of the piston-ring group, especially the calculation of the lubricating oil film thickness is very important. The oil film thickness between piston-ring and cylinder is studied by calculation method. The calculation program is developed with average Reynolds equation taken the surface topography, viscosity-temperature effect, viscosity-pressure effect, extrusion effect and other factors into account. The position of oil outlet point is preinstalled, the full lubrication is assumed, and the Reynolds equation is solved by full pivot element gausses elimination approach, so the iterative course and calculation workload are reduced, and a great lot of the calculating time is saved, the oil film thickness of full period can be more accurately predicted by the ordinary PC within 30 minutes, which can supply quick effective evidence for next calculation and analysis.


2018 ◽  
Author(s):  
◽  
Muslim Muhsin Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main object of this dissertation is to study the dynamic analysis of an inline internal combustion engine. This dissertation presents the kinematics and kinetic analyses of an inline internal combustion engine crank mechanism, the dynamic torque imbalance and foundation forces for a single-piston and multi-piston engines are studied as well. The objectives of this dissertation are to explore the inertial-torque characteristics and foundation forces of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this dissertation the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the reaction force between the ground and the crank in the x-direction and y-direction equations are nondimensionalized and shown to depend upon only six nondimensional groups, all related to the mass and geometry properties of the connecting rod and crank while the reaction force between the connecting rod and the piston in the x-direction y-direction, reaction force between the crank and the connecting rod in the x-direction y-direction, reaction force between the piston and the cylinder wall, and the inertial-torque equations are nondimensionalized all related to the mass and geometry properties of the connecting rod. As shown in this dissertation, the largest torque imbalance is exhibited by a 2-piston engine. The next largest torque imbalance is exhibited by a 3-piston engine, followed by a single-piston engine (this is not monotonic). The largest foundation forces are exhibited by a single-piston engine. The next largest foundation forces are exhibited by a 2-piston engine, followed by a 3e-piston engine, and that a dramatic reduction in the foundation forces and torque imbalance may be obtained by using 4 or more pistons in the design, when using as many as 8 pistons the foundation forces and torque imbalance essentially vanishes. It should be observed that the mass approximation captures 100 percent of the variability of the actual torque imbalance for engines that are designed with an odd number of pistons equal to or greater than three. The mass approximation captures 100 percent of the variability of the actual reaction force between the piston and cylinder wall for engines that are designed with single-piston and multi-pistons. The mass approximation captures 100 percent of the variability of the actual reaction force against piston pin for engines that are designed with single-piston. It is also shown in this dissertation that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.


2013 ◽  
Vol 690-693 ◽  
pp. 1999-2002
Author(s):  
Fan Ming Meng ◽  
Tao Yang ◽  
Tao Long

The influence of dimples on the inner surface of big end bearing in internal combustion engine (ICE) on tribological performances of the bearing was investigated based on Navier-Strokes equation and other associated equations. In doing so, the CFD modulus in the software ANSYS12 version is used to analyze the dimple effect on the tribological performances of the bearing using two-way fluid-solid coupling algorithm. Some mechanisms are revealed about the dimple effect on the load-carrying capacity and friction coefficient of oil film, and the deformation and stress for the textured big end bearing.


Sign in / Sign up

Export Citation Format

Share Document