Study on Tribological Performances for Textured Bearing of ICE

2013 ◽  
Vol 690-693 ◽  
pp. 1999-2002
Author(s):  
Fan Ming Meng ◽  
Tao Yang ◽  
Tao Long

The influence of dimples on the inner surface of big end bearing in internal combustion engine (ICE) on tribological performances of the bearing was investigated based on Navier-Strokes equation and other associated equations. In doing so, the CFD modulus in the software ANSYS12 version is used to analyze the dimple effect on the tribological performances of the bearing using two-way fluid-solid coupling algorithm. Some mechanisms are revealed about the dimple effect on the load-carrying capacity and friction coefficient of oil film, and the deformation and stress for the textured big end bearing.

Author(s):  
H. Bouassida ◽  
N. Biboulet ◽  
P. Sainsot ◽  
A. A. Lubrecht

Energy and environment are of major concern in internal combustion engine component design. The piston ring-cylinder liner (PRCL) contact plays an essential part in design and is highlighted in this study. In fact, the rings ensure the sealing property, reducing the environmental impact by avoiding lubricant contamination (blow-by) and lubricant consumption. Unfortunately, when sealing, the rings generate between 11 to 24% of the friction losses in an internal combustion engine [1], thus reducing the energy efficiency of the engine. The cylinder liner surface features a special micro-geometry, a classical one is the cross-hatching pattern, obtained by honing. This texturing acts as a micro-bearing, oil reservoir and debris trap. Understanding the influence of texture parameters as groove depth and width or angle, will allow tribological improvements of the PRCL contact. The 2D transient Reynolds equation has to be solved for this kind of surface. The statistical method using the Patir and Cheng [2] flow factors is widely used. This approach lumps the different components of the surface (grooves and plateaux) and does not consider the roughness directionality. Methods decoupling both components, like the homogenization method [3] are also used. Another alternative is to use a deterministic model on measured surfaces, but this is a “hugely” expensive approach. Multigrid methods [4] are used to drastically reduce the calculational cost. The aim of the current study is to facilitate the understanding of measured surface calculations. Hence, analytical surfaces are used. They allow a flexible handling of the cross-hatching parameters. The plateaux are perfectly smooth and the grooves are sinusoidally shaped. The top ring is modelled using a parabolic profile. Periodic boundary conditions are used in the orthoradial direction and zero pressure conditions (Dirichlet) in the axial direction. To investigate the effect of different parameters, various imposed film thicknesses are applied and the mean load carrying capacity (LCC) over time is calculated. When representing the LCC corresponding to each parameter compared to the smooth LCC, as a function of the logarithm of the minimum film thickness, the curves are quite linear for small values of the film thickness and then for larger values they converge to 1.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Vilmos V. Simon

In this study, an optimization methodology is proposed to systematically define the optimal tooth modifications introduced by head-cutter geometry and machine-tool settings to minimize the influence of misalignments on the elastohydrodynamic (EHD) lubrication characteristics in face-hobbed spiral bevel gears. The goal is to simultaneously maximize the EHD load-carrying capacity of the oil film and to minimize power losses in the oil film when different misalignments are inherent in the gear pair. The proposed optimization procedure relies heavily on the EHD lubrication analysis developed in this paper. The core algorithm of the proposed nonlinear programming procedure is based on a direct search method. Effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. A drastic increase in the EHD load-carrying capacity of the oil film and a reduction in the power losses in the oil film were obtained.


Author(s):  
Vilmos Simon

The thermal elastohydrodynamic analysis of lubrication is applied to investigate the influence of misalignments of the meshing members on lubrication in spiral bevel gears. The calculation is based on the simultaneous solution of the Reynolds, elasticity, energy, and Laplace’s equations. The full thermal EHD lubrication analysis is applied, therefore, the oil viscosity variation with respect to pressure and temperature and the density variation with respect to pressure are included. By using the corresponding computer program, the influence of pinion’s running offset and axial adjustment errors, and angular position error of pinion axis on maximum oil film pressure and temperature, EHD load carrying capacity, and on power losses in the oil film is investigated. On the basis of the obtained results it can be concluded that the EHD load carrying capacity and the friction factor are very sensitive to misalignments of the mating members in the spiral bevel gear pair, the friction factor is reduced by the increase of EHD load carrying capacity and vise versa, and the maximum inlet oil temperature is almost insensitive to the misalignments.


2018 ◽  
Vol 70 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Xiao-dong Yu ◽  
Lei Geng ◽  
Xiao-jun Zheng ◽  
Zi-xuan Wang ◽  
Xiao-gang Wu

Purpose Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity. Design/methodology/approach A mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted. Findings By increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available. Originality/value The load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.


1988 ◽  
Vol 110 (4) ◽  
pp. 699-703 ◽  
Author(s):  
Awny Y. Attia ◽  
Ahmed M. M. El-Bahloul

The paper presents the results of an experimental investigation carried out at Mansoura University Laboratories aiming at studying the effect of change of speed, oil viscosity, and helix angle on the load carrying capacity of the oil film. A three pairs of test gears of 6 DP, 91.5 mm pitch diameter with 22.3, 33.6 and 42.25 deg helix angles were run in power circulating test rig at 100 to 3000 r.p.m. speeds and transmitting tooth load ranging from 185 to 1090 Kp. The test gears were lubricated with oils of 200, 462, and 653 cSt at 40°C kinematic viscosities. The oil film thicknesses between contacting teeth were measured by measuring the changes in capacitance between test gears and transferred to linear dimensions by calibration curves drawn by knowing the changes in capacitance through the gaps between teeth of values known through the amount of backlash. The experimental results show that; Oil film thickness decreases with tooth load, while increases with speed and viscosity of the lubricant. Oil film thickness versus helix angle give an inversed parabola for the smallest and medium tooth loads, while oil film thickness decreases with increasing the helix angle under increased tooth loads. Load carrying capacity increases with speeds and viscosity of the lubricant while decreases with increasing the helix angle.


2012 ◽  
Vol 472-475 ◽  
pp. 391-394 ◽  
Author(s):  
Fan Ming Meng ◽  
Ling Zhang

The influence of cavitation in a lubricant between textured surfaces on tribological performances of the surfaces was investigated based on an extended Reynolds equation and other associated equations. The tribological performances of the surfaces holding dimples with divergent-convergent shape were analyzed with the cavitation effect consideration at different dimple numbers. In doing so, the elastic deformation of the surface is evaluated using continuous convolution fast Fourier transform (CC-FFT). Some mechanisms are revealed about the cavitation effect on the friction coefficient, friction force, load-carrying capacity and cavitated area of the textured surfaces.


Sign in / Sign up

Export Citation Format

Share Document