Modeling the inertial torque imbalance and foundation forces within an inline internal combustion engine : quantifying the equivalent mass approximation

2018 ◽  
Author(s):  
◽  
Muslim Muhsin Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main object of this dissertation is to study the dynamic analysis of an inline internal combustion engine. This dissertation presents the kinematics and kinetic analyses of an inline internal combustion engine crank mechanism, the dynamic torque imbalance and foundation forces for a single-piston and multi-piston engines are studied as well. The objectives of this dissertation are to explore the inertial-torque characteristics and foundation forces of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this dissertation the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the reaction force between the ground and the crank in the x-direction and y-direction equations are nondimensionalized and shown to depend upon only six nondimensional groups, all related to the mass and geometry properties of the connecting rod and crank while the reaction force between the connecting rod and the piston in the x-direction y-direction, reaction force between the crank and the connecting rod in the x-direction y-direction, reaction force between the piston and the cylinder wall, and the inertial-torque equations are nondimensionalized all related to the mass and geometry properties of the connecting rod. As shown in this dissertation, the largest torque imbalance is exhibited by a 2-piston engine. The next largest torque imbalance is exhibited by a 3-piston engine, followed by a single-piston engine (this is not monotonic). The largest foundation forces are exhibited by a single-piston engine. The next largest foundation forces are exhibited by a 2-piston engine, followed by a 3e-piston engine, and that a dramatic reduction in the foundation forces and torque imbalance may be obtained by using 4 or more pistons in the design, when using as many as 8 pistons the foundation forces and torque imbalance essentially vanishes. It should be observed that the mass approximation captures 100 percent of the variability of the actual torque imbalance for engines that are designed with an odd number of pistons equal to or greater than three. The mass approximation captures 100 percent of the variability of the actual reaction force between the piston and cylinder wall for engines that are designed with single-piston and multi-pistons. The mass approximation captures 100 percent of the variability of the actual reaction force against piston pin for engines that are designed with single-piston. It is also shown in this dissertation that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Noah D. Manring ◽  
Muslim Ali

The objectives of this research are to explore the inertial-torque characteristics of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this research, the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the inertial-torque equations are nondimensionalized and shown to depend upon only four nondimensional groups, all related to the mass and geometry properties of the connecting rod. As shown in this research, the inertial-torque imbalance is greatest for an engine with two pistons, and that a dramatic reduction in the torque imbalance may be obtained for engine designs that use four or more pistons. It is also shown in this paper that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.


Author(s):  
Serhiy Buriakovskyi ◽  
Borys Liubarskyi ◽  
Artem Maslii ◽  
Danylo Pomazan ◽  
Tatyana Tavrina

This article describes one of the possible ways for improving the energy efficiency of shunting diesel locomotives. It means a replacing a traditional traction electric transmission with a diesel generator set with a hybrid transmission with a free-piston internal combustion engine and a linear generator. The absence of a crankshaft in an internal combustion engine makes it possible to reduce thermal and mechanical losses, which, in turn, leads to an increase in the efficiency of traction electric transmission of the diesel locomotive.


2020 ◽  
Vol 10 (6) ◽  
pp. 87-95
Author(s):  
SMG Akele ◽  
C. Aganama ◽  
E. Emeka ◽  
Y. Abudu-Mimini ◽  
S. Umukoro ◽  
...  

In the early stages of development of internal combustion engine (ICE), limitations such as speed, range, and lifespan led to series of researches resulting in the reduction or elimination of these limitations. Combustion in ICE is a rapid and controlled endothermic reaction between air in oxygen and fuel which is accompanied by significant increase in temperature and pressure with the production of heat, flame and carbon particle deposits. This combustion process is a phenomenon that involves turbulence, loss of air-fuel mixture during inflow and outflow into the cylinder. The objection of this study is to perform port flow analysis on ICE to determine flow rate and swirl at different valve lift under stationary engine parts.Methodology employed to analyze and solve the ICE port flow simulation is the use of CFD software that uses the finite volume method of numerical analysis to solve the continuity, Navier-Stokes and energy equations governing the air medium in the internal combustion engine cylinder. The model geometry for the analysis was generated using the Ansys Design Modeller for one cylinder, one suction port and one exhaust port, and two valves. The domain considered is internal combustion engine suction port with 86741 nodes and 263155 elements. Study results revealed that air mass was more concentrated around the valve and inlet port cross-section with swirling motion seen, air stream experienced turbulence as it flowed downwards inside the cylinder, air stream spread was turbulent which will eventually enhance smooth combustion, swirling air stream moves towards the cylinder wall where it experienced tumbling and turbulent which will eventually enhance smooth combustion. From the simulation it was revealed that mass flow rate of inlet air increases with valve lift.


Author(s):  
F. Zhang ◽  
B. J. Gilmore ◽  
A. Sinha

Abstract Tolerance allocation standards do not exist for mechanical systems with flexibility and whose response are time varying, subjected to discontinuous forcing functions. Previous approaches based on optimization and numerical integration of the dynamic equations of motion encounter difficulty with determining sensitivities around the force discontinuity. The Alternating Frequency/Time approach is applied here to capture the effect of the discontinuity. The effective link length model is used to model the system and to account for the uncertainties in the link length, radial clearance and pin location. Since the effective link length model is applied, the equations of motion for the nominal system can be applied for the entire analysis. Optimization procedure is applied to the problem where the objective is to minimize the manufacturing costs and satisfy the constraints imposed on mechanical errors and design variables. Examples of tolerance allocation are presented for a single cylinder internal combustion engine with a flexible connecting rod.


2001 ◽  
Vol 123 (3) ◽  
pp. 444-454 ◽  
Author(s):  
Byung-Jik Kim ◽  
Kyung-Woong Kim

A comprehensive method of thermo-elastohydrodynamic lubrication analysis for connecting rod bearings is proposed, which includes thermal distortion as well as elastic deformation of the bearing surface. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while the bearing temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing structure. Mass-conserving cavitation algorithm is applied, and the effect of variable viscosity is included in the Reynolds equation. Simulation results of the connecting rod bearing of an internal combustion engine are presented. It is shown that the predicted level of the thermal distortion is as large as that of the elastic deformation and the bearing clearance, and that the thermal distortion has remarkable effects on the bearing performance. Therefore, the thermo-elastohydrodynamic lubrication analysis is strongly recommended to predict the performance of connecting rod bearings in internal combustion engines.


Author(s):  
C. D. Strang ◽  
J. T. Burwell

Piston rings with radio-active wearing-surfaces were used to study the micro-welding between rings and cylinder wall during “run-in” in a small, water-cooled, internal combustion engine. The results indicated that micro-welding and the accompanying transfer of metal were present under the mildest conditions of engine operation, including motoring with the engine cylinder-head removed. The distribution of micro-welding along the ring-travel was found to correspond to the wear profile observed in engine cylinders by other workers. Such transferred material may play a part in the formation of the “glazed” layer which is said to be present on “run-in” cylinder walls and rings. The presence of transferred metal at all points along the ring-travel indicates that the piston ring was not fully supported by a hydrodynamic oil film of sufficient thickness to separate completely the surfaces of the ring and the cylinder wall.


2021 ◽  
Author(s):  
Matúš Mrva ◽  
◽  
Pavol Pecho

The main goal of the Paper "Experimental state of tensile tests of aircraft piston internal combustion engine" is to create an experimental and fully functional measuring stand for monitoring the parameters of a model internal combustion piston engine, using different types of propellers. The partial goals are the creation of a teaching aid, the construction of a unique facility and the creation of opportunities for research and development in this area by other students. Using a measuring device, it was possible to record the various operating characteristics of the internal combustion engine. Based on this, the usability of individual propellers for the measured internal combustion engine can be determined.


2016 ◽  
Vol 852 ◽  
pp. 719-723
Author(s):  
Sunil S. Hebbalkar ◽  
Kaushik Kumar

An internal combustion engine with opposed piston engine (OPE) develops higher power density than any other conventional internal combustion engine by virtue of its design. A Two stroke OPE gives two power stroke within 3600 of crank revolution which indicates the higher power density. But this extra power also results in large amount of forces gets transmitted to both the crankshaft amounting to large unbalance in the engine. Hence for a smoother and noise free performance, engine should be dynamically balanced. So balancing is one of the main criteria for better performance. In this paper the dynamic analysis was performed by varying the linkage dimensions of OPE for balance OPE. The analytical calculation of inertia forces and dimensions for linkages has been compared with software based results, depending on pressure crank angle plot for two stroke engine.


Power analysis of internal combustion engine mechanical losses was performed and methods of its determination were considered. It is shown that the power of the mechanical losses of the piston engine is small, and it quickly decreases with a decrease in the speed of the engine shaft, which negatively affects the braking efficiency. Keywords car, braking by internal combustion engine, power of mechanical losses


Sign in / Sign up

Export Citation Format

Share Document