scholarly journals Study on the Effects of Water Content Ratio on the Combustion Characteristics of Heavy Oil C-Water Emulsified Fuel by Using a Small-Scale Combustion Furnace

2013 ◽  
Vol 79 (799) ◽  
pp. 406-414
Author(s):  
Chelemuge ◽  
Kunio YOSHIKAWA
2019 ◽  
Author(s):  
Aizam Shahroni Mohd Arshad

In this study, we investigated the atomization characteristics of rapid internal mixing injector (RIM injector) developed in our laboratory. RIM injector successfully emulsifies base fuel without any surfactant just before fuel injection. The diameter of droplet discharged from RIM injector was evaluated based on processing of shadowgraph images. It was found that Sauter mean diameter (SMD) of droplet is determined by the gas to liquid ratio (GLR) and viscosity of emulsified fuel. The increasing GLR decreases SMD value. As water content ratio is increased, the inner structure of droplet changes to W/O type emulsion. The emulsification increases its viscosity, which deteriorates the atomization characteristics. We proposed an empirical formula as functions of GLR and Reynolds number reproducing the deterioration resulting from increasing viscosity. The formula successfully predicts the SMD variation with respect to GLR and water content ratio. Finally, we examined the effect of atomization air ratio on NOx and PM emissions. The quantity of atomization air significantly influences the PM emission because the increasing air improves the mixing of fuel vapor with combustion air.


1997 ◽  
Vol 32 (6) ◽  
pp. 433-440
Author(s):  
Yasufumi Yoshimoto ◽  
Toshinori Kuramoto ◽  
Ziye Li ◽  
Minoru Tsukahara

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 802
Author(s):  
Suye Li ◽  
Hengqian Wu ◽  
Yanna Zhao ◽  
Ruiyan Zhang ◽  
Zhengping Wang ◽  
...  

The quality control of drug products during manufacturing processes is important, particularly the presence of different polymorphic forms in active pharmaceutical ingredients (APIs) during production, which could affect the performance of the formulated products. The objective of this study was to investigate the phase transformation of fexofenadine hydrochloride (FXD) and its influence on the quality and performance of the drug. Water addition was key controlling factor for the polymorphic conversion from Form I to Form II (hydrate) during the wet granulation process of FXD. Water-induced phase transformation of FXD was studied and quantified with XRD and thermal analysis. When FXD was mixed with water, it rapidly converted to Form II, while the conversion is retarded when FXD is formulated with excipients. In addition, the conversion was totally inhibited when the water content was <15% w/w. The relationship between phase transformation and water content was studied at the small scale, and it was also applicable for the scale-up during wet granulation. The effect of phase transition on the FXD tablet performance was investigated by evaluating granule characterization and dissolution behavior. It was shown that, during the transition, the dissolved FXD acted as a binder to improve the properties of granules, such as density and flowability. However, if the water was over added, it can lead to the incomplete release of the FXD during dissolution. In order to balance the quality attributes and the dissolution of granules, the phase transition of FXD and the water amount added should be controlled during wet granulation.


2005 ◽  
Vol 25 (17-18) ◽  
pp. 2998-3012 ◽  
Author(s):  
Hey-Suk Kim ◽  
Mi-Soo Shin ◽  
Dong-Soon Jang ◽  
Young-Chan Choi ◽  
Jae-Goo Lee

Sign in / Sign up

Export Citation Format

Share Document