scholarly journals Damping of transient vibration by a dynamic absorber.

1988 ◽  
Vol 54 (499) ◽  
pp. 561-568 ◽  
Author(s):  
Hideya YAMAGUCHI
2016 ◽  
Vol 90 ◽  
pp. 211-220 ◽  
Author(s):  
Xin Min Chang ◽  
Dong Jia liu ◽  
Fang Gao ◽  
Zhi Tang Lu ◽  
Li Li Long ◽  
...  

1983 ◽  
Vol 105 (3) ◽  
pp. 480-486 ◽  
Author(s):  
M. Sakata ◽  
T. Aiba ◽  
H. Ohnabe

In the field of rotor dynamics, increased attention is being given to the transient response analysis of the rotor, since the effects of impact loading and vibrations of the rotor arising from blade loss can be studied by a time transient solution of the rotor system. As recent trends in rotating machinery have been directed towards lightweight, high-speed flexible rotors, the effect of flexibility on transient response analysis is becoming of increasing importance. In the present paper, a transient vibration analysis is carried out on a flexible-disk/flexible-shaft system or rigid-disk flexible-shaft system subjected to a sudden imbalance that is assumed to represent the effect of blade loss. To solve the basic equation governing a rotating flexible disk the Galerkin’s method is used, and the equation of motion of the rotor system is numerically solved by employing the Runge-Kutta-Gill’s method. Experiments were conducted on a model rotor having a blade loss simulator; the shaft vibrations were also measured. The validity of the anaytical results was demonstrated by comparison with the experimental results.


Author(s):  
P S Keogh ◽  
C Mu ◽  
C R Burrows

Controller designs for the attenuation of rotor vibration are investigated. Disturbance inputs leading to vibration are classified and related to control forces and defined control states. Optimization based on the H∞ norm is then used to minimize the influence of forcing disturbances, modelling error and measurement error. The practicalities of applying the method to an experimental rotor-bearing system, with hardware constraints on controller order, are stated. The controller was implemented experimentally to conduct steady state and mass loss tests. Steady synchronous, non-synchronous and transient vibration attenuation was demonstrated. It was also shown that measurement error, caused by shaft surface roughness, can be incorporated into the controller design without the need to remove the roughness component from the measured displacement signals. If the roughness influence is not included in the design and the uncontrolled vibration is small, unnecessary control forces may result, causing an increase in vibration.


2000 ◽  
Vol 123 (2) ◽  
pp. 299-302 ◽  
Author(s):  
Shiyu Zhou ◽  
Jianjun Shi

Since many rotor systems normally operate above their critical speeds, the problem of accelerating the machine through its critical speeds without excessive vibration draws increasing attention. This paper provides an analytical imbalance response of the Jeffcott rotor under constant acceleration. The response consists of three parts: transient vibration due to the initial condition of the rotor, “synchronous” vibration, and suddenly occurring vibration at the damped natural frequency. This solution provides physical insight to the vibration of the rotor during acceleration.


1997 ◽  
Vol 119 (3) ◽  
pp. 658-667 ◽  
Author(s):  
J. P. Hathout ◽  
A. El-Shafei

This paper describes the proportional integral (PI) control of hybrid squeeze film dampers (HSFDS) for active control of rotor vibrations. Recently it was shown that the automatically controlled HSFD based on feedback of rotor speed can be a very efficient device for active control of rotor vibration when passing through critical speeds. Although considerable effort has been put into the study of steady-state vibration control, there are few methods in the literature applicable to transient vibration control of rotor-bearing systems. Rotating machinery may experience dangerously high dynamic loading due to the sudden mass unbalance that could be associated with blade loss. Transient run-up and coast down through critical speeds when starting up or shutting down rotating machinery induces excessive bearing loads at criticals. In this paper, PI control is proposed as a regulator for the HSFD system to attenuate transient vibration for both sudden unbalance and transient runup through critical speeds. A complete mathematical model of this closed-loop system is simulated on a digital computer. Results show an overall enhanced behavior for the closed-loop rotor system. Gain scheduling of both the integral gain and the reference input is incorporated into the closed-loop system with the PI regulator and results in an enhanced behavior of the controlled system.


Author(s):  
K. J. Liu ◽  
Keith E. Rouch

Abstract In order to reach the inside surfaces of some workpieces, a prototype for milling extension is developed. The milling extension has a low static stiffness and is prone to machine tool chatter, therefore vibration control in this type of machining is of importance. The paper proposes the application of an active dynamic absorber to the milling process. A finite element model for the milling extension with consideration of the cutting dynamics is developed. An annular ring serving as the dynamic absorber mass is connected to the main system through active force generating systems which are piezoelectric translators functioning as actuators. The annular ring and the actuators are functioning as an active dynamic absorber in the theory to suppress the vibration of the milling system. Optimal control algorithms are used to calculate the Kalman feedback control for the equivalent lumped-mass milling structure model. Transient responses of the system are obtained. Oscillation of the milling extension equipped with the active dynamic absorber is attenuated appreciably, therefore the surface finish of a workpiece is improved. Harmonic responses are also obtained with and without the feedback control to show the superiority of the active control technique. A proof-of-concept experiment is designed and conducted to verify the theoretical prediction. Comparisons between the simulation and experimental results are made.


Sign in / Sign up

Export Citation Format

Share Document