scholarly journals A Design Method of the Optimal PID Controller for Multiple Objective Optimization Using a Genetic Algorithms.

1998 ◽  
Vol 64 (620) ◽  
pp. 1299-1305 ◽  
Author(s):  
Shinsaku FUJIMOTO ◽  
Kazumasa OHSAKA
Author(s):  
Shapour Azar ◽  
Brian J. Reynolds ◽  
Sanjay Narayanan

Abstract Engineering decision making involving multiple competing objectives relies on choosing a design solution from an optimal set of solutions. This optimal set of solutions, referred to as the Pareto set, represents the tradeoffs that exist between the competing objectives for different design solutions. Generation of this Pareto set is the main focus of multiple objective optimization. There are many methods to solve this type of problem. Some of these methods generate solutions that cannot be applied to problems with a combination of discrete and continuous variables. Often such solutions are obtained by an optimization technique that can only guarantee local Pareto solutions or is applied to convex problems. The main focus of this paper is to demonstrate two methods of using genetic algorithms to overcome these problems. The first method uses a genetic algorithm with some external modifications to handle multiple objective optimization, while the second method operates within the genetic algorithm with some significant internal modifications. The fact that the first method operates with the genetic algorithm and the second method within the genetic algorithm is the main difference between these two techniques. Each method has its strengths and weaknesses, and it is the objective of this paper to compare and contrast the two methods quantitatively as well as qualitatively. Two multiobjective design optimization examples are used for the purpose of this comparison.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
XianHong Li ◽  
HaiBin Yu ◽  
MingZhe Yuan

This paper presents a design method of the optimal proportional-integral-derivative (PID) controller withɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE) performance index which contains control error and at least first-order error derivative, or even may containnth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO) problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices andɛ-Routh stability are presented for different processes. Control weight matrix andɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed.ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS) under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


2013 ◽  
Author(s):  
Morteza Saeidi Javash ◽  
Mir Mohammad Ettefagh ◽  
Yousof Ebneddin Hamidi

2021 ◽  
Vol 105 ◽  
pp. 104439
Author(s):  
Tram Nguyen ◽  
Toan Bui ◽  
Hamido Fujita ◽  
Tzung-Pei Hong ◽  
Ho Dac Loc ◽  
...  

2018 ◽  
Vol 41 (6) ◽  
pp. 1761-1771 ◽  
Author(s):  
Baran Hekimoğlu

A novel design method, sine-cosine algorithm (SCA) is presented in this paper to determine optimum proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system. The proposed approach is a simple yet effective algorithm that has balanced exploration and exploitation capabilities to search the solutions space effectively to find the best result. The simplicity of the algorithm provides fast and high-quality tuning of optimum PID controller parameters. The proposed SCA-PID controller is validated by using a time domain performance index. The proposed method was found efficient and robust in improving the transient response of AVR system compared with the PID controllers based on Ziegler-Nichols (ZN), differential evolution (DE), artificial bee colony (ABC) and bio-geography-based optimization (BBO) tuning methods.


Sign in / Sign up

Export Citation Format

Share Document