scholarly journals Stability characteristics and CFD analysis of two-phase flow of oil film journal bearing having two oil filler holes

2017 ◽  
Vol 83 (848) ◽  
pp. 16-00457-16-00457 ◽  
Author(s):  
Fuma SAKAI ◽  
Masayuki OCHIAI ◽  
Hiromu HASHIMOTO
2018 ◽  
Vol 70 (8) ◽  
pp. 1367-1373 ◽  
Author(s):  
Fangwei Xie ◽  
Xudong Zheng ◽  
Yaowen Tong ◽  
Bing Zhang ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film. Design/methodology/approach The FLUENT simulation model of the oil film between the friction disks is built. The effect of variation of working parameters such as input rotational speed, oil flow rate and film thickness on two-phase flow regime and transmission torque is studied by using the volume of fluid model. Findings The results show that the higher the rotational speed, the severer the cavitation is. In addition, the two-phase flow region makes the coverage of oil film over the friction pairs’ surface reduce, which results in a decrease in transmission torque for the hydro-viscous clutch. Originality/value These simulation results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for power transmission mechanism of oil film by considering the existence of a two-phase flow regime consisting of oil and air.


2018 ◽  
Vol 9 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Haibin Chen ◽  
Jie Zhu ◽  
Fangwei Xie ◽  
Xinjian Guo ◽  
Xudong Zheng

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Hengchao Sun ◽  
Guoding Chen ◽  
Li’na Wang ◽  
Fei Wang

The lubrication and heat transfer designs of bearing chamber depend on an understanding of oil/air two-phase flow. As initial and boundary conditions, the characteristics of ligament and droplet generation by oil film on rotating parts have significant influence on the feasibility of oil/air two-phase flow analysis. An integrated model to predict the oil film flow, ligament number, and droplet Sauter mean diameter (SMD) of a rotating disk, which is an abstraction of the droplet generation sources in a bearing chamber, is developed based on the oil film force balance analysis and wave theory. The oil film thickness and velocity, ligaments number, and droplet SMD are calculated as functions of the rotating disk radius, rotational speed and oil volume flow rate and oil properties. The theoretical results show that the oil film thickness and SMD are decreased with an increasing rotational speed, while the radial, transverse velocities, and ligament number are increased. The oil film thickness, radial velocity, and SMD are increased with an increasing oil flow rate, but the transverse velocity and ligament number are decreased. A test facility is built for the investigation into the ligament number of a rotating disk, and the measurement of ligament number is carried out by means of a high speed photography.


2009 ◽  
Vol 2009 (0) ◽  
pp. 361-362
Author(s):  
Toshio WATANABE ◽  
Kazuhiro SHITE ◽  
Satoshi WATANABE ◽  
Kusuo OKUMA ◽  
Akinori FURUKAWA

Sign in / Sign up

Export Citation Format

Share Document