Effect of two-phase flow on transmission characteristics of oil film between friction pair

2018 ◽  
Vol 9 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Haibin Chen ◽  
Jie Zhu ◽  
Fangwei Xie ◽  
Xinjian Guo ◽  
Xudong Zheng
2019 ◽  
Vol 72 (1) ◽  
pp. 79-85
Author(s):  
Zhibao Li ◽  
Fangwei Xie ◽  
Junyu Sun ◽  
Jie Zhu ◽  
Xudong Zheng ◽  
...  

Purpose The purpose of this paper is to study the temperature characteristics of hydro-viscous clutch with different structure of friction disks and obtain the distribution of film temperature. Design/methodology/approach The mathematical model of oil film between friction disks with radial grooves is established. Based on the flow rate equation, the temperature rise equation of oil film is deduced. Considering two-phase flow, the temperature distribution in the oil shear stage and the effects of the ratio of inner radius to outer radius on film temperature rise is studied by using computational fluid dynamics (CFD) technology. Findings The results show that when input speed is constant, the increase in the ratio of inner to outer radius leads to an increase in the peak temperature and the decrease in the ratio results in a larger increasing rate of temperature. Originality/value These results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for the mechanism of temperature rise by considering the effect of two-phase flow.


Author(s):  
Fangwei Xie ◽  
Xudong Zheng ◽  
Gang Sheng ◽  
Qi Sun ◽  
Ramesh K Agarwal

This paper describes a three-dimensional computational model of oil film between a friction pair to investigate the characteristics of both single-phase and two-phase flow of the oil film in hydro-viscous drive. For the single-phase oil film, the distribution of pressure is very regular from inlet to outlet of the friction pair; its value decreases gradually. On the other hand, the temperature in the middle part of the oil film is considerably lower and the velocity increases at a faster rate near the outlet and has a parabolic profile, which is mainly caused by both the shear stress and extrusion force. By comparison, the physical phenomena at the outlet of the oil film are entirely different for two-phase flow with cavitation. For two-phase simulation of flow with cavitation, we first obtain the volume fraction of air bubbles at rotation speeds of 500, 1000, 2000, 3000, and 4000 revolutions/min. With increase in the rotation speed, the volume fraction of air bubbles increases, and their maximum value becomes even greater than 10%. Furthermore, due to cavitation, the torque transferred by the oil film is no longer linear with the rotation speed; its value decreases gradually. These results are important in the study of hydro-viscous drive and its applications; they shed a new light on the mechanism of power transmission through oil film in the presence of cavitation.


2018 ◽  
Vol 70 (8) ◽  
pp. 1367-1373 ◽  
Author(s):  
Fangwei Xie ◽  
Xudong Zheng ◽  
Yaowen Tong ◽  
Bing Zhang ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the working characteristics of hydro-viscous clutch at high rotational speeds and obtain the trend of flow field variation of oil film. Design/methodology/approach The FLUENT simulation model of the oil film between the friction disks is built. The effect of variation of working parameters such as input rotational speed, oil flow rate and film thickness on two-phase flow regime and transmission torque is studied by using the volume of fluid model. Findings The results show that the higher the rotational speed, the severer the cavitation is. In addition, the two-phase flow region makes the coverage of oil film over the friction pairs’ surface reduce, which results in a decrease in transmission torque for the hydro-viscous clutch. Originality/value These simulation results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for power transmission mechanism of oil film by considering the existence of a two-phase flow regime consisting of oil and air.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Hengchao Sun ◽  
Guoding Chen ◽  
Li’na Wang ◽  
Fei Wang

The lubrication and heat transfer designs of bearing chamber depend on an understanding of oil/air two-phase flow. As initial and boundary conditions, the characteristics of ligament and droplet generation by oil film on rotating parts have significant influence on the feasibility of oil/air two-phase flow analysis. An integrated model to predict the oil film flow, ligament number, and droplet Sauter mean diameter (SMD) of a rotating disk, which is an abstraction of the droplet generation sources in a bearing chamber, is developed based on the oil film force balance analysis and wave theory. The oil film thickness and velocity, ligaments number, and droplet SMD are calculated as functions of the rotating disk radius, rotational speed and oil volume flow rate and oil properties. The theoretical results show that the oil film thickness and SMD are decreased with an increasing rotational speed, while the radial, transverse velocities, and ligament number are increased. The oil film thickness, radial velocity, and SMD are increased with an increasing oil flow rate, but the transverse velocity and ligament number are decreased. A test facility is built for the investigation into the ligament number of a rotating disk, and the measurement of ligament number is carried out by means of a high speed photography.


2009 ◽  
Vol 2009 (0) ◽  
pp. 361-362
Author(s):  
Toshio WATANABE ◽  
Kazuhiro SHITE ◽  
Satoshi WATANABE ◽  
Kusuo OKUMA ◽  
Akinori FURUKAWA

Sign in / Sign up

Export Citation Format

Share Document