scholarly journals Grazing Effects of the New Zealand Mud Snail Across a Productivity Gradient in the Greater Yellowstone Ecosystem

Author(s):  
Lesilie Riley ◽  
Mark Dybdahl ◽  
Robert Hall, Jr.

Accurately predicting the effects of introduced species on native commumtles and ecosystems is a challenge. Utilizing methods of food web ecology, we measured grazing effects of the invasive freshwater New Zealand mud snail, Potamopyrgus antipodarum, in streams within the Greater Yellowstone Ecosystem. Previous results indicate that P. antipodarum can significantly reduce algal standing stocks in less than one week, but it is not yet known if grazing effects vary across streams differing in benthic algae production. In this study, we measured the strength of P. antipodarum grazing on algal resources across six streams varying widely in ambient primary production. In field enclosure experiments within each stream, we estimated direct grazing effects of snails on algae by measuring chlorophyll a, gross primary production and chlorophyll a-specific primary production. In most streams, P. antipodarum decreased overall algal standing stocks, as measured by chlorophyll a, even though gross primary production was not affected. As a result, chlorophyll-a specific primary production increased in productive streams. Finally, standardized comparisons of P. antipodarum-algae interactions indicated that grazing effects were largest in the most productive streams. The overall impact of P. antipodarum on native stream communities will be greatest in the most productive streams if these assemblages are also capable of supporting dense P. antipodarum populations.

Author(s):  
Teresa Tibbets

Invasive species are one of the top two threats to native biodiversity worldwide (Mack et al. 2000). A primary goal of invasion biology is to predict which introduced species become invasive, or reach pest status, and which systems are susceptible to invasion (Heger and Trepl 2003). In order to complete this goal, it is vital to understand long-term dynamics of invasive species populations and their interactions with native communities in their introduced range. Most studies of invasions by non-native species are not extensive enough to determine long-term effects on the native systems (Strayer 2010). The first objective of this study is to determine the long-term abundance and biomass of the New Zealand mud snail, (Potamopyrgus antipodarum), in the Greater Yellowstone Area (GYA). The second objective is to analyze the long-term effects of P. antipodarum on the biomass, abundance, and taxon diversity of native benthic invertebrate assemblages in the GYA. The ten-year span of data available for P. antipodarum and the native macroinvertebrate communities at Lower Polecat Creek in Grand Teton National Park and the Gibbon and Firehole Rivers in Yellowstone National Park provide a unique opportunity to study the macroinvertebrate community succession over time. Data from the proposed macroinvertebrate community survey in the summer of 2011 will be compiled with previous surveys from 2001-2009 to evaluate the long-term changes in the macroinvertebrate community at Polecat Creek and the Gibbon and Firehole Rivers.


2008 ◽  
Vol 3 (3) ◽  
pp. 349-353 ◽  
Author(s):  
Timothy Davidson ◽  
Valance Brenneis ◽  
Catherine de Rivera ◽  
Robyn Draheim ◽  
Graham Gillespie

Author(s):  
Jeremy A. Geist ◽  
Jasmine L. Mancuso ◽  
Morgan M. Morin ◽  
Kennedy P. Bommarito ◽  
Emily N. Bovee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document