Evaluation of Denaturing Gradient Gel Electrophoresis (DGGE) for the Determination of Marine Phytoplankton Genetic Diversity

2014 ◽  
Vol 11 (2) ◽  
pp. 379-389
Author(s):  
Gires Usup ◽  
Asmat Ahmad ◽  
Lee S. Jin
2013 ◽  
Vol 94 (11) ◽  
pp. 2524-2529 ◽  
Author(s):  
Vicky Lynne Baillie ◽  
Gustav Bouwer

Environmental and infection variables may affect the genetic diversity of baculovirus populations. In this study, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) was used as a model system for studying the effects of a key infection variable, inoculum dose, on the genetic diversity within nucleopolyhedrovirus populations. Diversity and equitability indices were calculated from DNA polymerase-specific denaturing gradient gel electrophoresis profiles obtained from individual H. armigera neonate larvae inoculated with either an LD5 or LD95 of HearNPV. Although the genetic diversity detected in larvae treated with an LD95 was not statistically different from the diversity detected in the HearNPV inoculum samples, there was a statistically significant difference in the genetic diversity detected in the LD5-inoculated larvae compared with the genetic diversity detected in the HearNPV samples used for the inoculations. The study suggests that inoculum dose needs to be considered carefully in experiments that evaluate HearNPV genetic diversity or in studies where differences in genetic diversity may have phenotypic consequences.


2018 ◽  
Vol 55 (3) ◽  
pp. 956-963 ◽  
Author(s):  
Burcin Karabey ◽  
Didem Eroglu ◽  
Caner Vural ◽  
Guven Ozdemir ◽  
Oktay Yerlikaya ◽  
...  

1998 ◽  
Vol 64 (8) ◽  
pp. 2770-2779 ◽  
Author(s):  
Alexandre S. Rosado ◽  
Gabriela F. Duarte ◽  
Lucy Seldin ◽  
Jan Dirk Van Elsas

ABSTRACT The diversity of dinitrogenase reductase gene (nifH) fragments in Paenibacillus azotofixans strains was investigated by using molecular methods. The partial nifHgene sequences of eight P. azotofixans strains, as well as one strain each of the close relatives Paenibacillus durum,Paenibacillus polymyxa, and Paenibacillus macerans, were amplified by PCR by using degenerate primers and were characterized by DNA sequencing. We found that there are twonifH sequence clusters, designated clusters I and II, inP. azotofixans. The data further indicated that there was sequence divergence among the nifH genes of P. azotofixans strains at the DNA level. However, the gene products were more conserved at the protein level. Phylogenetic analysis showed that all nifH cluster II sequences were similar to the alternative (anf) nitrogenase sequence. A nested PCR assay for the detection of nifH (cluster I) of P. azotofixans was developed by using the degenerate primers as outer primers and two specific primers, designed on the basis of the sequence information obtained, as inner primers. The specificity of the inner primers was tested with several diazotrophic bacteria, and PCR revealed that these primers are specific for the P. azotofixans nifH gene. A GC clamp was attached to one inner primer, and a denaturing gradient gel electrophoresis (DGGE) protocol was developed to study the genetic diversity of this region of nifH inP. azotofixans strains, as well as in soil and rhizosphere samples. The results revealed sequence heterogeneity among differentnifH genes. Moreover, nifH is probably a multicopy gene in P. azotofixans. Both similarities and differences were detected in the P. azotofixans nifH DGGE profiles generated with soil and rhizosphere DNAs. The DGGE assay developed here is reproducible and provides a rapid way to assess the intraspecific genetic diversity of an important functional gene in pure cultures, as well as in environmental samples.


1998 ◽  
Vol 64 (9) ◽  
pp. 3464-3472 ◽  
Author(s):  
David C. Gillan ◽  
Arjen G. C. L. Speksnijder ◽  
Gabriel Zwart ◽  
Chantal De Ridder

The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas,Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of theCytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes.


Sign in / Sign up

Export Citation Format

Share Document