Drop Size Spectra from Nozzles in High-Speed Airstreams

1985 ◽  
Vol 28 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Wesley E. Yates ◽  
Robert E. Cowden ◽  
Norman B. Akesson
Keyword(s):  
2018 ◽  
Vol 860 ◽  
pp. 510-543 ◽  
Author(s):  
K. Dhivyaraja ◽  
D. Gaddes ◽  
E. Freeman ◽  
S. Tadigadapa ◽  
M. V. Panchagnula

Sprays are a class of multiphase flows which exhibit a wide range of drop size and velocity scales spanning several orders of magnitude. The objective of the current work is to experimentally investigate the prospect of dynamical similarity in these flows. We are also motivated to identify a choice of length and time scales which could lead towards a universal description of the drop size and velocity spectra. Towards this end, we have fabricated a cohort of geometrically similar pressure swirl atomizers using micro-electromechanical systems (MEMS) as well as additive manufacturing technology. We have characterized the dynamical characteristics of the sprays as well as the drop size and velocity spectra (in terms of probability density functions, p.d.f.s) over a wide range of Reynolds ($Re$) and Weber numbers ($We$) using high-speed imaging and phase Doppler interferometry, respectively. We show that the dimensionless Sauter mean diameter ($D_{32}$) scaled to the boundary layer thickness in the liquid sheet at the nozzle exit ($\unicode[STIX]{x1D6FF}_{o}$) exhibits self-similarity in the core region of the spray, but not in the outer zone. In addition, we show that global drop size spectra in the sprays show two distinct characteristics. The spectra from varying $Re$ and $We$ collapse onto a universal p.d.f. for drops of size $x$ where $x/\unicode[STIX]{x1D6FF}_{o}>1$. For $x/\unicode[STIX]{x1D6FF}_{o}<1$, a residual effect of $Re$ and $We$ persists in the size spectra. We explain this characteristic by the fact that the physical mechanisms that cause large drops is different from that which is responsible for the small drops. Similarly, with the liquid sheet velocity at the nozzle exit ($u_{s}$) as the choice of velocity scale, we show that drops moving with a velocity $u$ such that $u/u_{s}<1$ collapse onto a universal p.d.f., while drops with $u/u_{s}>1$ exhibit a residual effect of $Re$ and $We$. From these observations, we suggest that physically accurate models for drop size and velocity spectra should rely on piecewise descriptions of the p.d.f. rather than invoking a single mathematical form for the entire distribution. Finally, we show from a dynamical modal analysis that the conical liquid sheet flapping characteristics exhibit a sharp transition in Strouhal number ($St$) at a critical $Re$.


2013 ◽  
Vol 644 ◽  
pp. 203-206
Author(s):  
Hai Liang Cai ◽  
Bi Feng Song ◽  
Yang Pei ◽  
Shuai Shi

For making sure the dry bay ignition and fire, it’s necessary to calculate the number and the sizes of the droplets and determine the mass flow rate of the fuel induced by high-speed impact and penetration of a rigid projectile into fuel tank. An analytical model is founded and the method for calculating the initial leaking velocity of the fuel is determined. It gives the equation for calculating the drop size distributions of fuel and the Sauter mean diameter (SMD) of droplets, through the Maximum Entropy Theory and the conservation for mass. Using the Harmon’s equation for SMD,the fuel droplets SMD can be calculated. Results shows that the initial leaking velocity of the fuel is about linearly increasing with the velocity of the projectile, the SMD of fuel droplets increases with the hole size of the fuel tank which induced by the penetration of the projectile and linearly decreases with the velocity of the projectile. The results can be used for the ignition and fire analysis of the dry bay adjacent to fuel tanks.


1979 ◽  
Vol 21 (5) ◽  
pp. 357-360 ◽  
Author(s):  
J. J. E. Williams ◽  
R. I. Crane

A numerical technique is developed for predicting the evolution of drop-size spectra in turbulent, two-phase pipe flows. While relevant to many chemical engineering processes, it is applied here to the crossover pipes of a nuclear wet-steam turbine. Valid expressions for turbulent coagulation rate in the cross-over pipes are available only for drops below about 10 μm diameter in the core flow, and for those exceeding about 20 μm near the pipe wall. Using these expressions, it is found that the rapid formation of large drops in the core allows prediction for only a small fraction of the typical residence time in the pipe, but near the wall the volume median diameter of an initial 20 μm monodispersion can double in 100 ms. Further work is required to validate the technique and extend it to handle the intervening ranges of drop size and turbulence parameters.


2009 ◽  
Vol 93 (1-3) ◽  
pp. 619-635 ◽  
Author(s):  
María Fernández-Raga ◽  
Amaya Castro ◽  
Covadonga Palencia ◽  
Ana I. Calvo ◽  
Roberto Fraile
Keyword(s):  

1975 ◽  
Vol 97 (2) ◽  
pp. 283-288 ◽  
Author(s):  
L. S. Akin ◽  
J. J. Mross ◽  
D. P. Townsend

Lubricant jet flow impingement and penetration depth into a gear tooth space were measured at 4920 and 2560 using a 8.89-cm- (3.5-in.) pitch dia 8 pitch spur gear at oil pressures from 7 × 104 to 41 × 104 N/m2 (10 psi to 60 psi). A high speed motion picture camera was used with xenon and high speed stroboscopic lights to slow down and stop the motion of the oil jet so that the impingement depth could be determined. An analytical model was developed for the vectorial impingement depth and for the impingement depth with tooth space windage effects included. The windage effects on the oil jet were small for oil drop size greater than 0.0076 cm (0.003 in.). The analytical impingement depth compared favorably with experimental results above an oil jet pressure of 7 × 104 N/m2 (10 psi). Some of this oil jet penetrates further into the tooth space after impingement. Much of this post impingement oil is thrown out of the tooth space without further contacting the gear teeth.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Karl Bumke ◽  
Jörg Seltmann

Drop size spectra were measured by using an optical disdrometer of type ODM 470 at different locations. They were subdivided in to four data sets: measurements over land, in coastal areas, over semienclosed seas, and over the open sea. Based on 1-minute measurement intervals, no differences were found in drop size spectra between continental and maritime areas. An exponential model with a rain rate depending on interception number and prefactor in the exponent fits well the spectra, and maximum drop sizes depend strongly on estimated rain rates. In contrast to other investigations, there are no significant differences between spectra of convective and stratiform rain based on 1-minute measurement intervals. However, spectra integrated over 10 minutes show the expected differences.


Sign in / Sign up

Export Citation Format

Share Document