Noise Analysis at Different Technological Solutions of Milking Devices

2018 ◽  
Vol 34 (6) ◽  
pp. 921-927
Author(s):  
Martin Pšenka ◽  
Štefan Mihina ◽  
Matti Järvi ◽  
Marie Šístková ◽  
Viera Kažimírová ◽  
...  

Abstract. The aim of this article is to evaluate the noise levels of different milking systems. Noise was measured at 15 dairy farms in Slovakia, Finland, and the Czech Republic. Out of these, there were three herringbone, three tandem, three side-by-side, and three rotary milking parlors, and three automatic milking systems (AMS). Brüel&Kjær type 2270 sound analyser was used for measuring noise levels. Equivalent sound pressure level (LAeq), maximum sound pressure level (LAFmax), and peak values (LCPk) have been recorded in each milking system during the entire herd milking session. Keywords: Animal welfare, Dairy cows, Milking device, Noise exposure.

2016 ◽  
Vol 19 (2) ◽  
pp. 49-51
Author(s):  
Marie Šístková ◽  
Martin Pšenka ◽  
Ivo Celjak ◽  
Petr Bartoš ◽  
Štefan Mihina ◽  
...  

Abstract Mechanical devices in parlours are a source of noise, and this noise has an effect not only on the operators of the parlour but also on dairy cows. They have more sensitive hearing than humans. The aim of this article was to analyse the sound pressure level and determine the noise exposure of dairy cows at different technological solutions of milking parlours, during their day routine. In the experiment, tandem, herringbone and rotary milking parlours were used. Noise exposure was measured during the milking process. After evaluation of noise pressure levels of different types of milking parlours, it can be concluded that in this experiment, the equivalent noise pressure level was lowest in the tandem milking parlour. Equivalent sound pressure levels in the rotary and herringbone milking parlour were almost about the same values. These values are higher than values in the tandem milking parlour, about 10 decibels. The differences within mean LAFeq values between the herringbone milking parlour and tandem milking parlour were highly statistically significant (P <0.001***).


Jurnal Zona ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 91-106
Author(s):  
Eko Hendi Saputra ◽  
Yusni Ikhwan Siregar ◽  
Hafidawati Hafidawati

This study aims to determine the level of noise caused by flight activities at Sultan Syarif Kasim II Airport Pekanbaru, analyze noise levels that occur due to flight activities at Sultan Syarif Kasim II Airport Pekanbaru and analyze efforts to control the negative impact of airport noise on the living environment of community settlements. around Sultan Syarif Kasim II Airport Pekanbaru. This research uses field observation method, which is making direct observations at the research location by looking at the condition of the location and the suitability of the location which is the sampling point of the study (the noise level boundary at Sultan Syarif Kasim II Airport). Observations were made for 16 hours (Ls) at an interval of 06.00 - 22.00. Measurement of sound pressure level is carried out on holidays (Sunday) and weekdays (Monday), which starts on November 1, November 2, November 8, and November 9, 2020, which is carried out in residential areas around Sultan Syarif Kasim II Airport Pekanbaru, which are spread across 6 measurement points where the measurement of sound pressure level is done in duplicate, namely: Jl. Kaswari (point 1), Jl. Rawa Indah II (Point 2), Jl. Rawa Indah III (Point 3), Jl. Cinnamon (Point 4), Jl. Pahlawan Kerja gg.Pala 49 (Point 5) and Jl. Nur Asiyah (Point 6) The results of the processing of noise measurement data were made of a mapping model using surfer 11 software and to clarify the noise description at the sampling location, the map of the results of surfer 11 software processing was plotted on the airport area map.     Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate that the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         From the results of the research that has been done, several mitigation strategies can be formulated to reduce noise levels around Sultan Syarif Kasim II airport. Planting plants in accordance with the needs of controlling or reducing noise in human settlements. Tree categories suitable for planting in residential areas around the airport are: shady trees that can be planted tightly or with lots of leaves that can grow to a height of about 4 - 15 m (such as acacia, mahogany, flamboyant, ironwood or banyan trees, bamboo or cypress)


2017 ◽  
Vol 7 (1) ◽  
pp. 35-40
Author(s):  
Ranij Shrestha ◽  
Alankar Kafle ◽  
Kul Prasad Limbu

The environmental noise level measurement in Dharan and Inaruwa cities of eastern Nepal were conducted and compared with the ambient noise standards provided by Government of Nepal. The noise pollution assessment was performed in autumn and winter seasons by the indicator average day time sound pressure level (Ld, during 7.00 to 22.00 hrs) and average night time sound pressure level (Ln, during 22.00 to 7.00 hrs). The Ld and Ln values at the commercial, silence and residential zones of Dharan were 78 to 82 and 72 to 73, 65 to 73 and 60 to 70, 65 to 76 and 62 to 64 dB(A) in autumn and 78 to 79 and 72 to 76, 64 to 71 and 58 to 68, 63 to 74 and 60 to 62 dB(A) in winter, respectively whereas for Inaruwa, measurement were 75 to 77 and 73 to 75, 59 and 57, 67 and 60 dB(A) in autumn and 66 to 70 and 63 to 68, 55 and 53, 65 and 58 dB(A) in winter, respectively. The results showed that noise levels exceeded the standard value at most of the sites.


2021 ◽  
Vol 263 (4) ◽  
pp. 2550-2554
Author(s):  
Timothy Van Renterghem ◽  
Pieter Thomas ◽  
Dick Botteldooren

Excessive road traffic noise exposure in (sub)urban parks hinders its restorative function and will negatively impact the number of visitors. Especially in such green environments, noise abatements by natural means, well integrated in the landscape, are the most desired solutions. Although dense vegetation bordering the park or raised berms could come first in mind, local landscape depressions are typically underused. In this work, a case-study of a small suburban park, squeezed in between two major arterial roads, is analyzed. The spatially dependent road traffic noise exposure in the park is assessed in detail by mobile sound pressure level measurements. Local reductions of up to 6-7 dBA are found at landscape depressions of only a few meters deep. It can therefore be concluded that this is an efficient measure and should be added to the environmental noise control toolbox for noise polluted parks.


2020 ◽  
Author(s):  
Bo Li ◽  
Yujing Wu ◽  
Dange Guo ◽  
Dan Luo ◽  
Diangui HUANG

Abstract This paper imitates the raised structure of the leading edge of the humpback whale fin limbs, designed six bionic blades. The aerodynamic analysis show that: the wave leading edge blade can improve the total pressure efficiency of the axial flow fan, and under off-design conditions, the aerodynamic performance of bionic fan is better than that of prototype fan. The noise analysis shows that: under the condition of constant wave number, increasing wave amplitude can reduce the overall sound pressure level at the monitoring point, in the middle and high frequency range, the sound pressure level of the bionic fan at the monitoring point is significantly lower than that of the prototype fan, and the noise reduction effect increases with the increase of wave amplitude; under the condition of constant wave amplitude, increasing the wave number can reduce the fan noise. At a certain wave number and amplitude, the overall sound pressure level of the bionic fan at the monitoring point is at most 2.91 dB lower than that of the prototype fan. In this paper, the noise reduction effect of increasing wave number is more obvious than that of increasing wave amplitude.


1974 ◽  
Vol 39 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Lynne Marshall ◽  
John F. Brandt

Temporary threshold shift resulting from exposure to one and five toy cap gun pistol shots was investigated using 11 normal-hearing adult subjects and one subject with a noise-induced hearing loss. The subjects fired the cap gun at arm’s length, and absolute thresholds at 4000 Hz were obtained before and after noise exposure by a fixed-frequency Bekesy technique. After exposure to one gunshot, five subjects showed a small TTS, five demonstrated no TTS, and two (including the subject with the hearing loss) exhibited negative TTS. No TTS occurred in any of the subjects after exposure to five shots. It was postulated that the small amount of TTS was due to the unexpectedly low sound pressure level produced by the cap gun and to the contraction of the middle ear muscles in some subjects prior to firing.


Author(s):  
Amir Karimi Noughabi ◽  
Morteza Bayati ◽  
Mehran Tadjfar

Underwater propeller cavitation noise is composed of tonal blade rate noise and high frequency broadband noise. Cavitation usually increases overall sound pressure level in the various frequency ranges which depends on the type of cavitation. This research had been carry out to predict the radiated noise from a marine propeller in presence of cavitation with various cavitation types. The analysis is performed by coupling an acoustic code based on the Ffowcs Williams-Hawkings (FWH) equation to unsteady Reynolds-averaged Navier-Stokes (URANS) which able to simulate multiphase flows in rotational domains. A brief summary of numerical method used to model the cavitation around the underwater propeller are presented and the thrust and torque coefficients are validated in different flow conditions by experimental results. The radiated noise along the shaft direction and perpendicular to the shaft direction is studied on both cavitating and non-cavitating propellers. Then, to predict the radiated noise due to cavitation in marine propeller, the computed sound pressure level (SPL) for non-cavitating marine propeller is compared with the SPL for the same propeller in cavitation conditions at various cavitation number and advanced coefficients. The noise analysis helps to determine the dominant noise source of the underwater propeller in different conditions, which will provide a basis for proper noise control strategies.


1978 ◽  
Vol 86 (1) ◽  
pp. ORL-125-ORL-128 ◽  
Author(s):  
Allen F. Ryan ◽  
Robert C. Bone

Chinchillas were exposed to a noise band (1,414 to 5,656 Hz, 100-dB sound pressure level [SPL] for one hour) and treated with kanamycin (150 mg/kg a day until hearing loss was noted at 6.0 kHz) either separately, simultaneously, or sequentially. Simultaneous noise and kanamycin resulted in interactive potentiation of threshold shift and cochlear pathologic condition. Kanamycin treatment two months after noise exposure produced similar potentiation. No interaction was seen when noise exposure occurred one month after kanamycin treatment.


2021 ◽  
Vol 69 (6) ◽  
pp. 518-529
Author(s):  
Changyong Jiang ◽  
Xiang Liu ◽  
Stephany Y. Xu ◽  
Shangyu Zhang

In this paper, the efficacy of porous ceiling treatment to reduce noise levels inside a typical tunnel is examined with a validated modal-based prediction method. It is found that, for a point source, the effect of increasing porous ceiling thickness on sound pressure level (SPL) attenuation along the tunnel is limited. A porous ceiling with thickness of 0.3 m is comparable with an infinite porous ceiling in middle and high frequency ranges. For a line source, the effect of ceiling thickness on SPL reduc- tion in this typical tunnel is limited. Sound pressure level reduction of 4 dBA is real- ized with 0.3 m porous ceiling, which is the same as infinite ceiling and only 1 dBA smaller than the theoretically optimized value. These results suggest that, in the event only ceiling treatment is considered, 0.3 m porous material is sufficient for noise re- duction in this typical tunnel.


2015 ◽  
Vol 39 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Rafał Młyński ◽  
Emil Kozłowski ◽  
Jan Adamczyk

Abstract The impulse noise is agent harmful to health not only in the case of shots from firearms and the explosions of explosive materials. This kind of noise is also present in many workplaces in the industry. The paper presents the results of noise parameters measurements in workplaces where four different die forging hammers were used. The measured values of the C-weighted peak sound pressure level, the A-weighted maximum sound pressure level and A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level) exceeded the exposure limit values. For example, the highest measured value of the C-weighted peak sound pressure level was 148.9 dB. In this study possibility of the protection of hearing with the use of earplugs or earmuffs was assessed. The measurement method for the measurements of noise parameters under hearing protection devices using an acoustical test fixture instead of testing with the participation of subjects was used. The results of these measurements allows for assessment which of two tested earplugs and two tested earmuffs sufficiently protect hearing of workers in workplaces where forging hammers are used.


Sign in / Sign up

Export Citation Format

Share Document