scholarly journals Mitigasi dampak kebisingan bandara terhadap kehidupan pemukiman sekitar bandara SSK II Pekanbaru

Jurnal Zona ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 91-106
Author(s):  
Eko Hendi Saputra ◽  
Yusni Ikhwan Siregar ◽  
Hafidawati Hafidawati

This study aims to determine the level of noise caused by flight activities at Sultan Syarif Kasim II Airport Pekanbaru, analyze noise levels that occur due to flight activities at Sultan Syarif Kasim II Airport Pekanbaru and analyze efforts to control the negative impact of airport noise on the living environment of community settlements. around Sultan Syarif Kasim II Airport Pekanbaru. This research uses field observation method, which is making direct observations at the research location by looking at the condition of the location and the suitability of the location which is the sampling point of the study (the noise level boundary at Sultan Syarif Kasim II Airport). Observations were made for 16 hours (Ls) at an interval of 06.00 - 22.00. Measurement of sound pressure level is carried out on holidays (Sunday) and weekdays (Monday), which starts on November 1, November 2, November 8, and November 9, 2020, which is carried out in residential areas around Sultan Syarif Kasim II Airport Pekanbaru, which are spread across 6 measurement points where the measurement of sound pressure level is done in duplicate, namely: Jl. Kaswari (point 1), Jl. Rawa Indah II (Point 2), Jl. Rawa Indah III (Point 3), Jl. Cinnamon (Point 4), Jl. Pahlawan Kerja gg.Pala 49 (Point 5) and Jl. Nur Asiyah (Point 6) The results of the processing of noise measurement data were made of a mapping model using surfer 11 software and to clarify the noise description at the sampling location, the map of the results of surfer 11 software processing was plotted on the airport area map.     Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate that the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         From the results of the research that has been done, several mitigation strategies can be formulated to reduce noise levels around Sultan Syarif Kasim II airport. Planting plants in accordance with the needs of controlling or reducing noise in human settlements. Tree categories suitable for planting in residential areas around the airport are: shady trees that can be planted tightly or with lots of leaves that can grow to a height of about 4 - 15 m (such as acacia, mahogany, flamboyant, ironwood or banyan trees, bamboo or cypress)

2018 ◽  
Vol 34 (6) ◽  
pp. 921-927
Author(s):  
Martin Pšenka ◽  
Štefan Mihina ◽  
Matti Järvi ◽  
Marie Šístková ◽  
Viera Kažimírová ◽  
...  

Abstract. The aim of this article is to evaluate the noise levels of different milking systems. Noise was measured at 15 dairy farms in Slovakia, Finland, and the Czech Republic. Out of these, there were three herringbone, three tandem, three side-by-side, and three rotary milking parlors, and three automatic milking systems (AMS). Brüel&Kjær type 2270 sound analyser was used for measuring noise levels. Equivalent sound pressure level (LAeq), maximum sound pressure level (LAFmax), and peak values (LCPk) have been recorded in each milking system during the entire herd milking session. Keywords: Animal welfare, Dairy cows, Milking device, Noise exposure.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450027 ◽  
Author(s):  
Mohammad Reza Monazzam ◽  
Elham Karimi ◽  
Parvin Nassiri ◽  
Lobat Taghavi ◽  
Samaneh Karbalaei

The main objective of this study was to investigate the noise levels at different land uses of District 14 in Tehran. For this purpose, a total number of 91 sampling stations were selected. Afterwards, the equivalent sound pressure level in each station was measured at three occasions of morning (7–9 am), noon (12–3 pm), and evening (5–8 pm). Based on the conformability requirement of each land uses, noise levels was divided in three zones wherein the land uses are exposed to different noise levels was estimated. The obtained results indicated that 8.79% of 78 land uses (residential, recreational and medical) in the Zone 1 were exposed to acceptable range of sound pressure level while the rest suffers from unacceptable noise levels. Among 10 land uses of Zone 2 (commercial–residential), 2.19% were within the acceptable range and 8.78% were in unacceptable range. None of the three land uses in Zone 3 were within the acceptable range. Accordingly, the Zone 3 was recognized to be in a critical condition. In other words, about 88.99% of the total and uses in the Zone 3 is exposed to unaccepted able noise level. Comparing with the standard equivalent sound pressure level of 55 dB(A) presented, the residential land use with the equivalent sound pressure level of 19.27 dB(A) accounted for the highest standard deviation. This is due to proximity of most of the residential areas to the crowded highways and streets.


2017 ◽  
Vol 7 (1) ◽  
pp. 35-40
Author(s):  
Ranij Shrestha ◽  
Alankar Kafle ◽  
Kul Prasad Limbu

The environmental noise level measurement in Dharan and Inaruwa cities of eastern Nepal were conducted and compared with the ambient noise standards provided by Government of Nepal. The noise pollution assessment was performed in autumn and winter seasons by the indicator average day time sound pressure level (Ld, during 7.00 to 22.00 hrs) and average night time sound pressure level (Ln, during 22.00 to 7.00 hrs). The Ld and Ln values at the commercial, silence and residential zones of Dharan were 78 to 82 and 72 to 73, 65 to 73 and 60 to 70, 65 to 76 and 62 to 64 dB(A) in autumn and 78 to 79 and 72 to 76, 64 to 71 and 58 to 68, 63 to 74 and 60 to 62 dB(A) in winter, respectively whereas for Inaruwa, measurement were 75 to 77 and 73 to 75, 59 and 57, 67 and 60 dB(A) in autumn and 66 to 70 and 63 to 68, 55 and 53, 65 and 58 dB(A) in winter, respectively. The results showed that noise levels exceeded the standard value at most of the sites.


2021 ◽  
Vol 263 (4) ◽  
pp. 2550-2554
Author(s):  
Timothy Van Renterghem ◽  
Pieter Thomas ◽  
Dick Botteldooren

Excessive road traffic noise exposure in (sub)urban parks hinders its restorative function and will negatively impact the number of visitors. Especially in such green environments, noise abatements by natural means, well integrated in the landscape, are the most desired solutions. Although dense vegetation bordering the park or raised berms could come first in mind, local landscape depressions are typically underused. In this work, a case-study of a small suburban park, squeezed in between two major arterial roads, is analyzed. The spatially dependent road traffic noise exposure in the park is assessed in detail by mobile sound pressure level measurements. Local reductions of up to 6-7 dBA are found at landscape depressions of only a few meters deep. It can therefore be concluded that this is an efficient measure and should be added to the environmental noise control toolbox for noise polluted parks.


1974 ◽  
Vol 39 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Lynne Marshall ◽  
John F. Brandt

Temporary threshold shift resulting from exposure to one and five toy cap gun pistol shots was investigated using 11 normal-hearing adult subjects and one subject with a noise-induced hearing loss. The subjects fired the cap gun at arm’s length, and absolute thresholds at 4000 Hz were obtained before and after noise exposure by a fixed-frequency Bekesy technique. After exposure to one gunshot, five subjects showed a small TTS, five demonstrated no TTS, and two (including the subject with the hearing loss) exhibited negative TTS. No TTS occurred in any of the subjects after exposure to five shots. It was postulated that the small amount of TTS was due to the unexpectedly low sound pressure level produced by the cap gun and to the contraction of the middle ear muscles in some subjects prior to firing.


2012 ◽  
Vol 30 (4) ◽  
pp. 349-359 ◽  
Author(s):  
Edith Van Dyck ◽  
Dirk Moelants ◽  
Michiel Demey ◽  
Alexander Deweppe ◽  
Pieter Coussement ◽  
...  

The present study aims to gain better insight into the connection between music and dance by examining the dynamic effects of the bass drum on a dancing audience in a club-like environment. One hundred adult participants moved freely in groups of five to a musical sequence that comprised six songs. Each song consisted of one section that was repeated three times, each time with a different sound pressure level of the bass drum. Hip and head movements were recorded using motion capture and motion sensing. The study demonstrates that people modify their bodily behavior according to the dynamic level of the bass drum when moving to contemporary dance music in a social context. Participants moved more actively and displayed a higher degree of tempo entrainment as the sound pressure level of the bass drum increased. These results indicate that the prominence of the bass drum in contemporary dance music serves not merely as a stylistic element; indeed, it has a strong influence on dancing itself.


Author(s):  
Untung Adi Santosa ◽  
Ikhsan Setiawan ◽  
B.S. Utomo

<p class="AbstractEnglish"><strong>Abstract: </strong>This paper reports the test results of a loudspeaker-based acoustic energy harvester with acoustic random noise sources from a motorcycle. The harvester consists of a quarter wavelength resonator and a subwoofer type loudspeaker with a nominal diameter of 6 inches. The motorcycle used in this experiment is 135 cc Bajaj Pulsar motorsport with modified exhaust from the GBS-Motosport Jakarta. The motor engine is operated at 3000 rpm, resulting in noise with a fluctuating Sound Pressure Level (SPL) in the range of (90-93) dB. Six variations of resonator lengths are used, those are 21 cm, 31 cm, 58 cm, 85 cm, 112 cm, and 139 cm. In this test, data of dominant frequency, SPL, and output rms voltage were taken for 15 minutes. The rms voltage is measured at 100 Ω load resistor. The results show that the 112 cm resonator produces the highest average rms electrical power, that is (0.21 ± 0.01) mW, which is obtained at frequency that fluctuates within (95-120) Hz. In addition, with random sound sources, SPL and its dominant frequency fluctuate greatly, so it will greatly affect the generated electric power. Further research is needed to enhance the output electrical power and anticipate the impact of frequency fluctuation which exists in random noise sources.</p><p class="AbstractEnglish"><strong>Abstrak: </strong>Paper ini memaparkan hasil pengujian alat pemanen energi akustik berbasis <em>loudspeaker </em>dengan sumber kebisingan acak dari mesin kendaraan bermotor. Alat pemanen energi akustik ini terdiri dari resonator seperempat panjang gelombang dan <em>loudspeaker</em> jenis <em>subwoofer</em> dengan diameter nominal 6 inci. Sumber kebisingan yang digunakan adalah motor Bajaj Pulsar 135 cc dengan knalpot modifikasi dari GBS-Motosport Jakarta. Mesin motor dioperasikan pada laju putaran tetap 3000 rpm, sehingga menghasilkan kebisingan dengan <em>SPL</em> (<em>sound pressure level</em>) yang berfluktuasi dalam interval (90-93) dB. Digunakan enam variasi panjang resonator, yaitu 21 cm, 31 cm, 58 cm, 85 cm, 112 cm, dan 139 cm. Dalam pengujian ini, data frekuensi dominan kebisingan, <em>SPL</em> kebisingan, dan tegangan keluaran alat pemanen energi akustik diambil selama 15 menit. Tegangan <em>rms</em> keluaran diukur pada resistor beban 100 Ω. Hasil eksperimen menunjukkan bahwa resonator dengan panjang 112 cm menghasilkan daya listrik <em>rms</em> rata-rata tertinggi yaitu sebesar (0,21 ± 0,01) mW, diperoleh pada frekuensi yang berfluktuasi antara 95 Hz sampai 120 Hz. Selain itu, hasil eksperimen ini menunjukkan bahwa dengan sumber bunyi acak, <em>SPL</em> kebisingan dan frekuensi dominannya sangat berfluktuasi, sehingga akan sangat berpengaruh terhadap daya listrik yang dihasilkan. Penelitian lebih lanjut diperlukan untuk meningkatkan daya listrik keluaran dan mengantisipasi dampak fluktuasi frekuensi sumber kebisingan acak.</p>


2020 ◽  
Vol 68 (3) ◽  
pp. 199-208
Author(s):  
Tomas VilniÅ¡kis ◽  
Tomas JanuÅ¡eviÄ?ius ◽  
Pranas BaltrÄ—nas

Intense sound levels produced by engineering equipment have become an acute issue. As most of engineering equipment require air supply, exhaust and good ventilation, it is not possible to control the noise by covering them with tight hoods. Louver with blades covered with acoustic materials and gaps that enable free circu- lation of air are used to this end. Three louver configurations were tested in the semi-anechoic chamber: bare metal louver blades, louver with blades covered with 20-mm-thick polystyrene foam slabs on both sides, and louver with blades covered with 15-mm-thick glass wool slab. According to the test results, louver with blades covered with glass wool slab demonstrated the best noise attenuation characteristics. The reduction of equiv- alent sound pressure level subject to blade inclination angle was from 10.8 to 12.5 dB. Sound pressure level reduction by louver with blades covered with poly- styrene foam slabs was weaker: the reduction of equivalent sound pressure level was from 5.4 to 8.4 dB. Louver with blades not covered with any acoustic material demonstrated the least noise attenuation result from 1.9 to 3.9 dB


Sign in / Sign up

Export Citation Format

Share Document