Assessment of Real-Time, In-Shell Kernel Moisture Content Monitoring with a Microwave Moisture Meter during Peanut Drying

2014 ◽  
pp. 649-656 ◽  
Author(s):  
C. F. Thomas ◽  
M. C. Bourlas ◽  
T. S. Laszlo ◽  
D. F. Magin

AbstractA method for determining the moisture content of tobacco based upon microwave heating has been conceived and developed. At the conditions and with the sample size selected, the method satisfies the requirements of the tobacco industry for rapid accurate moisture determinations during the processing of tobacco. It has thus been shown to be a viable alternative to moisture analysis by Karl Fischer titration and the conventional oven drying procedure. It has also been shown that the calculated percent weight loss in the microwave instrument coincides with the actual water content with negligible loss of volatiles other than water. This is in sharp contrast to the results obtained in oven drying the tobacco. The concepts employed in the moisture meter are not limited to tobacco as a sample. It may be useful for moisture determinations on a variety of previously difficult or time-consuming to analyse materials such as grain, paper or meat. It is envisioned in the future as a generally acceptable method for the measurement of the moisture content of tobacco


2005 ◽  
Vol 1 (1) ◽  
pp. 77-93
Author(s):  
Bíborka Gillay ◽  
David B. Funk

The price paid for corn is usually based on 15.0 or 15.5 percent moisture content. However, corn must be dried below 13 percent moisture to ensure safe storage for a year or more. In the U.S., such stored corn cannot be directly remoistened before selling it, but it can be mixed with moist new-crop corn. Accurate moisture measurement of mixtures of dry and moist corn is important to permit adjustment of blending ratios to maximize profitability, but grain moisture meters are less accurate for mixtures of wet and dry grain. This research evaluated the differences between dielectric-type moisture meter results for mixed and equilibrated corn samples at different moisture levels and different measurement frequencies. Equilibrated grain samples tended to give lower moisture results than recently mixed grain samples - especially in the 1 to 10 MHz region. These differences permitted detection of mixtures by using moisture measurements at two frequencies.


1935 ◽  
Vol 25 (3) ◽  
pp. 326-343 ◽  
Author(s):  
W. S. Rogers

1. A soil moisture meter which gives direct and continuous measurement of the soil moisture content is described. The instrument consists of a special porous pot filled with water, connected by a tube to a mercury manometer. The pot is buried in the soil, whose capillary pull causes the mercury to rise. The height to which the mercury rises depends on the amount of moisture in the soil, and also on the size of soil particles and the degree of compactness of the soil. (The last two factors remain constant for an instrument in one position.)2. To read actual moisture percentage each instrument has to be calibrated for the soil in which it is placed. Once this is done, all sampling and weighing is eliminated.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012059
Author(s):  
A A Almaleeh ◽  
A Zakaria ◽  
M H F Rahiman ◽  
Y B Abdul Rahim ◽  
L Munirah ◽  
...  

Abstract Grain storage is an important part of the post-harvest quality assurance process. The moisture level of the grains during storage is one of the primary problems. The current method of measuring rice grain moisture content is based on random sampling, which is relatively localised, and there is no real-time moisture content measurement available. The RF signal was used to build a new technique for detecting moisture and its presence in rice in real-time in this paper. The mapping of an RF signal, in particular, can be transformed into volumetric tomographic images that can be used to forecast moisture distribution.


2021 ◽  
Vol 37 (1) ◽  
pp. 193-203
Author(s):  
Renny Eka Purti ◽  
Azmi Yahya ◽  
Oh Yun Ju ◽  
Maryam Mohd Isa ◽  
Samsuzana Abdul Aziz

Abstract. A simple, portable, and rugged instrumentation system has been successfully developed and field demonstrated to monitor, measure, and record the harvested crop yield and selected machine field performance parameters from the typical rice combines in Malaysia. The complete system comprises of two ultrasonic sensors located at the combine header to measure the cutting width, microwave solid flow, and microwave moisture sensors at the combine clean grain auger to measure the flow rate and moisture content of the cleaned grains going into the grain tank, electromagnetic detector on the combine grain elevator drive shaft to monitor the grain elevator rotational speed, and lastly a DGPS receiver on the combine console roof to indicate the travel speed and geo-position in the field. All these measured parameters were made to display in-real time on the touch panel screen of the embedded system on-board the combine for the interest of the combine operator and also made to display in-real time on the monitor of the toughbook at the on-ground base station for the interest of the system controller. Static calibrations on the individual sensors showed excellent measurement linearity having R2 values within 0.8760 to 1.000 ranges. The wireless communication between the embedded system on-board the combine and the toughbook at the on-ground base station could be sustained to a maximum distance of 185 m apart. Site specific variability maps of crop yield, harvested grain moisture content, combine cutting width, combine traveling speed, combine field capacity, and combine field efficiency within the harvested area could be produced from the data obtained with the instrumentation system using a GIS software. Keywords: Grain harvesting, Paddy mechanization, Precision farming, Wireless data transmission, Yield monitoring.


1962 ◽  
Vol 39 (3) ◽  
pp. 139-139
Author(s):  
Associated Electrical Industries Ltd.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Agata Rascio ◽  
Michele Rinaldi ◽  
Giuditta De Santis ◽  
Nicola Pecchioni ◽  
Gabriele Palazzo ◽  
...  

Abstract Background The presence and persistence of water on the leaf can affect crop performance and thus might be a relevant trait to select for or against in breeding programmes. Low-cost, rapid and relatively simple methods are of significant importance for screening of large populations of plants for moisture analysis of detached leaves. Leaf moisture can be detected using an electric circuit, where the resistance changes are proportional to the moisture of the measured surface. In this study, we present a protocol to analyse genotypic differences through the electrical properties of living or stored tissues, performed using a commercial device. Expanded and non-expanded leaves were compared to determine the effects of leaf maturity on these data. Two wheat genotypes that differ in tissue affinity for bound water were used to define the influence of water status. Results The device indirectly estimates leaf moisture content using two electrodes applied to the leaf lamina of fresh and stored samples. Single moisture readings using this moisture meter had mean execution time of ~ 1.0 min. Exponential associations provided good fits for relationships between the moisture meter reading (MMR) and the electrical resistance applied to the electrodes. MMR normalised for the water/ dry matter ratio (MMRnorm) was lower for mature leaves of the water-mutant than those of wild-type, for the fully hydrated fresh leaves. MMR of fully mature leaves when partially dehydrated and measured after 10 min at 27 °C and 40% relative humidity was greater for the water-mutant than the wild-type. Conclusions This case study provides a low-cost tool to compare electrical-resistance estimates of leaf moisture content, together with a promising and rapid phenotyping protocol for genotypic screening of wheat under standard environmental conditions. Measurement of changes in MMR with time, of fresh and partially dehydrated leaves, or of MMR normalised to tissue water content allowed for differentiation between the genotypes. Furthermore, the differences observed between genotypes that here relate particular to tissue affinity for bound water suggest that not only the free-water fraction, but also other water fractions, can affect these electrically estimated leaf moisture measures.


Sign in / Sign up

Export Citation Format

Share Document