Portable Wireless Yield Monitoring System on Conventional Rice Combine

2021 ◽  
Vol 37 (1) ◽  
pp. 193-203
Author(s):  
Renny Eka Purti ◽  
Azmi Yahya ◽  
Oh Yun Ju ◽  
Maryam Mohd Isa ◽  
Samsuzana Abdul Aziz

Abstract. A simple, portable, and rugged instrumentation system has been successfully developed and field demonstrated to monitor, measure, and record the harvested crop yield and selected machine field performance parameters from the typical rice combines in Malaysia. The complete system comprises of two ultrasonic sensors located at the combine header to measure the cutting width, microwave solid flow, and microwave moisture sensors at the combine clean grain auger to measure the flow rate and moisture content of the cleaned grains going into the grain tank, electromagnetic detector on the combine grain elevator drive shaft to monitor the grain elevator rotational speed, and lastly a DGPS receiver on the combine console roof to indicate the travel speed and geo-position in the field. All these measured parameters were made to display in-real time on the touch panel screen of the embedded system on-board the combine for the interest of the combine operator and also made to display in-real time on the monitor of the toughbook at the on-ground base station for the interest of the system controller. Static calibrations on the individual sensors showed excellent measurement linearity having R2 values within 0.8760 to 1.000 ranges. The wireless communication between the embedded system on-board the combine and the toughbook at the on-ground base station could be sustained to a maximum distance of 185 m apart. Site specific variability maps of crop yield, harvested grain moisture content, combine cutting width, combine traveling speed, combine field capacity, and combine field efficiency within the harvested area could be produced from the data obtained with the instrumentation system using a GIS software. Keywords: Grain harvesting, Paddy mechanization, Precision farming, Wireless data transmission, Yield monitoring.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012059
Author(s):  
A A Almaleeh ◽  
A Zakaria ◽  
M H F Rahiman ◽  
Y B Abdul Rahim ◽  
L Munirah ◽  
...  

Abstract Grain storage is an important part of the post-harvest quality assurance process. The moisture level of the grains during storage is one of the primary problems. The current method of measuring rice grain moisture content is based on random sampling, which is relatively localised, and there is no real-time moisture content measurement available. The RF signal was used to build a new technique for detecting moisture and its presence in rice in real-time in this paper. The mapping of an RF signal, in particular, can be transformed into volumetric tomographic images that can be used to forecast moisture distribution.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 897
Author(s):  
Chaiyan Sirikun ◽  
Grianggai Samseemoung ◽  
Peeyush Soni ◽  
Jaturong Langkapin ◽  
Jakkree Srinonchat

Rice grain yield was estimated from a locally made Thai combine harvester using a specially developed sensing and monitoring system. The yield monitoring and sensing system, mounted on the rice combine harvester, collected and logged grain mass flow rate and moisture content, as well as pertinent information related to field, position and navigation. The developed system comprised a yield meter, GNSS receiver and a computer installed with customized software, which, when assembled on a local rice combine, mapped real-time rice yield along with grain moisture content. The performance of the developed system was evaluated at three neighboring (identically managed) rice fields. ArcGIS® software was used to create grain yield map with geographical information of the fields. The average grain yield values recorded were 3.63, 3.84 and 3.60 t ha−1, and grain moisture contents (w.b.) were 22.42%, 23.50% and 24.71% from the three fields, respectively. Overall average grain yield was 3.84 t ha−1 (CV = 63.68%) with 578.10 and 7761.58 kg ha−1 as the minimum and maximum values, respectively. The coefficients of variation in grain yield of the three fields were 57.44%, 63.68% and 60.41%, respectively. The system performance was evaluated at four different cutter bar heights (0.18, 0.25, 0.35 and 0.40 m) during the test. As expected, the tallest cutter bar height (0.40 m) offered the least error of 12.50% in yield estimation. The results confirmed that the developed grain yield sensor could be successfully used with the local rice combine harvester; hence, offers and ‘up-gradation’ potential in Thai agricultural mechanization.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4102 ◽  
Author(s):  
Chengjie Li ◽  
Bin Li ◽  
Junying Huang ◽  
Changyou Li

The online measurement of moisture content for grains is an essential technology to realize real-time tracking and control, improve drying quality and reduce energy consumption of the drying process. To improve the measurement accuracy and reliability of the dynamic measurement process as well as expand the application scope of the device, the present work constructed an experimental equipment for determining dynamic resistance characteristics of a single grain. The relations between moisture content and real-time resistance waveform were revealed, and an analytical calculation method of peak value and peak area of waveform was proposed, which correctly revealed the electrical measurement properties of grain. The results demonstrated that the gap width between the electrodes had large influence on the sensor’s performance. Moreover, an online measuring device was developed based on the experimental analysis and calculation method, and the test results in both lab and field for different grains showed that online real-time absolute measurement error are within ±0.5% in the varied moisture content (10–35%w.b.) and the temperature (−20–50 °C). The main results and the developed device might provide technical support for developing intelligent grain drying equipment.


2012 ◽  
Vol 220-223 ◽  
pp. 1977-1981
Author(s):  
Bing Hui Fan ◽  
Peng Ji ◽  
Jian Gong Li

In order to make prosthetic work in unstructured environments in real time to solve the inverse kinematics problem, the coordinates of the location of the end of the workspace of the manipulator rod needed to know. The spatial orientation value of random object relative to prosthesis basic coordinates be calculated in real time is realized in the embedded system by means of two three-dimensional attitude sensors and one laser ranging sensor.This method can provide the necessary raw information for the multiple degree of freedom prosthesis which works in an unstructured environment to complete the operational tasks assigned.


2018 ◽  
pp. 94-101
Author(s):  
Dmytro Fedasyuk ◽  
Tetyana Marusenkova ◽  
Ratybor Chopey

The work deals with a significant problem of ensuring that the execution time of a firmware running inside a microcontroller-based real-time embedded system never goes out of its expected range, no matter for how long the embedded system has been used. Once having been tested before the first usage, a newly created embedded system is gradually getting slower in its response, due to the fact that its hardware components get worn-out with aging. A possible solution is a replacement of the hardware components that most contribute to such a change in the response time of the embedded system. If such a replacement takes place too far in advance, long before hardware components actually start showing any decline in their response time, the above-mentioned solution is cost-ineffective and impractical, as it leads to a waste of equipment and efforts. We introduce a method for predicting the appropriate maintenance period of a real-time embedded system on the basis of the characteristics of its hardware components.


The Embedded system is employ in safety and critical application, which is greater reliability. The watchdog timers are used in automatic systems to handle the operation time for secure the timer failure. Majority of the watchdog timers used an additional circuit to adjust their timeout position and it will provide limited services in terms of working. This paper presents the architecture of a watchdog timer and also gives the design structure, it will working in safety and critical conditions. The operations are general and it can be used to monitor the working of any processor in real-time application. This paper discussed the implementation of the proposed timer in a FPGA. This will helps to design easily in different applications, it will gives reduces the overall system cost. The watchdog timers is to detect and give response very effectively and also gives the responses of faults by analyzing the simulations


Sign in / Sign up

Export Citation Format

Share Document