<i>Real-time Corn Grain Measurement Device Using Stereo Vision</i>

2019 ◽  
Author(s):  
Matthew Benjamin Rogers ◽  
Robert Clark Stevens
Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1242
Author(s):  
Sihao Zhang ◽  
Jingyang Liu ◽  
Guigen Zeng ◽  
Chunhui Zhang ◽  
Xingyu Zhou ◽  
...  

In most of the realistic measurement device-independent quantum key distribution (MDI-QKD) systems, efficient, real-time feedback controls are required to maintain system stability when facing disturbance from either external environment or imperfect internal components. Traditionally, people either use a “scanning-and-transmitting” program or insert an extra device to make a phase reference frame calibration for a stable high-visibility interference, resulting in higher system complexity and lower transmission efficiency. In this work, we build a machine learning-assisted MDI-QKD system, where a machine learning model—the long short-term memory (LSTM) network—is for the first time to apply onto the MDI-QKD system for reference frame calibrations. In this machine learning-assisted MDI-QKD system, one can predict out the phase drift between the two users in advance, and actively perform real-time phase compensations, dramatically increasing the key transmission efficiency. Furthermore, we carry out corresponding experimental demonstration over 100 km and 250 km commercial standard single-mode fibers, verifying the effectiveness of the approach.


2021 ◽  
Author(s):  
Dengqing Tang ◽  
Lincheng Shen ◽  
Xiaojiao Xiang ◽  
Han Zhou ◽  
Tianjiang Hu

<p>We propose a learning-type anchors-driven real-time pose estimation method for the autolanding fixed-wing unmanned aerial vehicle (UAV). The proposed method enables online tracking of both position and attitude by the ground stereo vision system in the Global Navigation Satellite System denied environments. A pipeline of convolutional neural network (CNN)-based UAV anchors detection and anchors-driven UAV pose estimation are employed. To realize robust and accurate anchors detection, we design and implement a Block-CNN architecture to reduce the impact of the outliers. With the basis of the anchors, monocular and stereo vision-based filters are established to update the UAV position and attitude. To expand the training dataset without extra outdoor experiments, we develop a parallel system containing the outdoor and simulated systems with the same configuration. Simulated and outdoor experiments are performed to demonstrate the remarkable pose estimation accuracy improvement compared with the conventional Perspective-N-Points solution. In addition, the experiments also validate the feasibility of the proposed architecture and algorithm in terms of the accuracy and real-time capability requirements for fixed-wing autolanding UAVs.</p>


Sign in / Sign up

Export Citation Format

Share Document