Enteric Methane Emissions of Beef Cows Grazing Tallgrass Prairie Pasture on the Southern Great Plains

2019 ◽  
Vol 62 (6) ◽  
pp. 1455-1465
Author(s):  
Richard W. Todd ◽  
Corey Moffet ◽  
James P. S. Neel ◽  
Kenneth E. Turner ◽  
Jean L. Steiner ◽  
...  

HighlightsEnteric methane (CH4) from beef cows on pasture was measured over three seasons using three methods.Methods yielded similar results during the summer grazing season but diverged in autumn and winter seasons.Emission averaged 0.34, 0.27, and 0.29 kg CH4 cow-1 during lactation, mid-gestation, and late gestation, respectively.Annualized enteric methane emission rate for a beef cow herd grazing tallgrass prairie was 0.32 kg d-1 cow-1.Abstract. Methane (CH4) is an important greenhouse gas, and about 20% of the carbon dioxide equivalent (CO2e) greenhouse gases emitted by U.S. agriculture are attributed to enteric CH4 produced by grazing beef cattle. Grazing cattle are mobile point sources of methane and present challenges to quantifying the enteric methane emission rate (MER). In this study, we applied three methods to measure herd-scale and individual-animal MER for a herd of beef cows grazing a native tallgrass prairie: a point source method that used forward-mode dispersion analysis and open-path lasers and cow locations, an open chamber breath analysis system (GreenFeed), and an eddy covariance ratio method that used the ratio of CH4 and CO2 mass fluxes. Three campaigns were conducted during the early season (July), late season (October), and dormant season (February). The point source and GreenFeed methods yielded similar MER (±SD) values during the early season campaign: 0.38 ±0.04 and 0.34 ±0.05 kg d-1 cow-1, respectively. However, the MER values from the two methods diverged in subsequent seasons. The GreenFeed MER decreased through the late and dormant seasons to 0.23 ±0.03 and 0.19 ±0.03 kg d-1 cow-1, respectively. In contrast, the point source MER stayed the same during the late season and increased during the dormant season to 0.41 ±0.07 kg d-1 cow-1. The CH4:CO2 ratio method, which was used only during the dormant season, yielded a MER of 0.29 ±0.05 kg d-1 cow-1. The point source and GreenFeed methods measured different MER (integrated herd-scale versus a subset of individual animals) and likely sampled methane emissions at different times during the day. We conclude that the point source method tended to overestimate emissions, and the GreenFeed method tended to underestimate emissions. Enteric methane emissions from beef cows over the three grazing seasons averaged 0.39 and 0.25 kg d-1 cow-1 as measured by the point source and GreenFeed methods, respectively. An annualized enteric MER for a beef cow herd grazing tallgrass prairie was 0.32 kg d-1 cow-1. Quantifying enteric methane emissions from grazing beef cows remains a challenge because of the mobile, often dispersed behavior of grazing cattle and the dynamic interactions of forage quality, dry matter intake, and changing physiological state of cows during the year. Keywords: Beef cows, Enteric methane, Forage quality, Grazing, Tallgrass prairie.

2018 ◽  
Author(s):  
Richard W. Todd ◽  
Corey Moffet ◽  
James P.S. Neel ◽  
Kenneth E. Turner ◽  
Jean L. Steiner ◽  
...  

2012 ◽  
Vol 92 (4) ◽  
pp. 493-500 ◽  
Author(s):  
J. N. Bernier ◽  
M. Undi ◽  
J. C. Plaizier ◽  
K. M. Wittenberg ◽  
G. R. Donohoe ◽  
...  

Bernier, J. N., Undi, M., Plaizier, J. C., Wittenberg, K. M., Donohoe, G. R. and Ominski, K. H. 2012. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Can. J. Anim. Sci. 92: 493–500. This study was conducted to determine the impact of prolonged cold exposure on dry matter intake (DMI) and enteric methane (CH4) emissions of overwintering beef cows consuming low-quality forage with and without supplemented protein in the form of dried distillers’ grain with solubles (DDGS). The study was carried out with 30 mature, dry, open beef cows (663±52.9 kg) that were fed a low-quality (deficient CP, 6.0% CP) forage (control), low-quality forage supplemented with 10% DDGS (sufficient CP, 8.7% CP; DDGS10) or 20% DDGS (excess CP, 11.6% CP; DDGS20). Carrying out the study from October through February allowed assessment under thermal neutral and prolonged cold conditions typical of the prairie region of Canada (Manitoba, Alberta and Saskatchewan). Average minimum and maximum daily temperatures were 2.7 and 13.8°C in the thermal neutral period, and –23.5 and −11.0°C in the prolonged cold period, respectively. When no protein supplements were offered, cows exposed to prolonged cold consumed less (P=0.01) forage than when exposed to thermal neutral conditions. Enteric CH4 emissions, when measured as litres per day, were not influenced (P>0.05) by dietary protein supplementation, averaging 285.6±11.71, 311.9±11.49 and 282.6±13.02 L d−1 for cows fed control, DDGS10, and DDGS20 diets, respectively. When expressed as a percentage of energy consumed, cows consuming low-quality forage supplemented with 20% DDGS produced 18.5% less (P=0.01) enteric CH4 relative to cows consuming the low-quality forage only, with emissions of 5.3±0.38 and 6.5±0.33% GEI, respectively. Mature beef cows maintained at the same physiological status and dietary regime produced 26.8% less (P=0.001) enteric CH4 (7.1±0.30 vs. 5.2±0.26% GEI) under prolonged cold as compared with thermal neutral conditions. Based on these results, enteric CH4 emissions for the Canadian cow herd that is overwintered outdoors may be overestimated using current International Panel on Climate Change (IPCC) methodology.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Naomi Cristina Meister ◽  
Abmael da Silva Cardoso ◽  
Fernando Oliveira Alari ◽  
Nailson Lima Santos Lemos ◽  
Rosa Toyoko Shiraishi Frighetto ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinfeng Chang ◽  
Shushi Peng ◽  
Philippe Ciais ◽  
Marielle Saunois ◽  
Shree R. S. Dangal ◽  
...  

2016 ◽  
Vol 56 (3) ◽  
pp. 451 ◽  
Author(s):  
Xuezhao Sun ◽  
David Pacheco ◽  
Dongwen Luo

A series of experiments was conducted in New Zealand to evaluate the potential of forage brassicas for mitigation of enteric methane emissions. Experiments involved sheep and cattle fed winter and summer varieties of brassica forage crops. In the sheep-feeding trials, it was demonstrated that several species of forage brassicas can result, to a varying degree, in a lower methane yield (g methane per kg of DM intake) than does ryegrass pasture. Pure forage rape fed as a winter crop resulted in 37% lower methane yields than did pasture. Increasing the proportion of forage rape in the diet of sheep fed pasture linearly decreased methane yield. Feeding forage rape to cattle also resulted in 44% lower methane yield than did feeding pasture. In conclusion, reductions in methane emission are achievable by feeding forage brassicas, especially winter forage rape, to sheep and cattle. Investigating other aspects of these crops is warranted to establish their value as a viable mitigation tool in pastoral farming.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
J. M. Moorby ◽  
H. R. Fleming ◽  
V. J. Theobald ◽  
M. D. Fraser

2021 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Xianjiang Chen ◽  
Christopher Reynolds ◽  
Les Crompton ◽  
Huiru Zheng ◽  
Haiying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document