Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles

2012 ◽  
Vol 92 (4) ◽  
pp. 493-500 ◽  
Author(s):  
J. N. Bernier ◽  
M. Undi ◽  
J. C. Plaizier ◽  
K. M. Wittenberg ◽  
G. R. Donohoe ◽  
...  

Bernier, J. N., Undi, M., Plaizier, J. C., Wittenberg, K. M., Donohoe, G. R. and Ominski, K. H. 2012. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Can. J. Anim. Sci. 92: 493–500. This study was conducted to determine the impact of prolonged cold exposure on dry matter intake (DMI) and enteric methane (CH4) emissions of overwintering beef cows consuming low-quality forage with and without supplemented protein in the form of dried distillers’ grain with solubles (DDGS). The study was carried out with 30 mature, dry, open beef cows (663±52.9 kg) that were fed a low-quality (deficient CP, 6.0% CP) forage (control), low-quality forage supplemented with 10% DDGS (sufficient CP, 8.7% CP; DDGS10) or 20% DDGS (excess CP, 11.6% CP; DDGS20). Carrying out the study from October through February allowed assessment under thermal neutral and prolonged cold conditions typical of the prairie region of Canada (Manitoba, Alberta and Saskatchewan). Average minimum and maximum daily temperatures were 2.7 and 13.8°C in the thermal neutral period, and –23.5 and −11.0°C in the prolonged cold period, respectively. When no protein supplements were offered, cows exposed to prolonged cold consumed less (P=0.01) forage than when exposed to thermal neutral conditions. Enteric CH4 emissions, when measured as litres per day, were not influenced (P>0.05) by dietary protein supplementation, averaging 285.6±11.71, 311.9±11.49 and 282.6±13.02 L d−1 for cows fed control, DDGS10, and DDGS20 diets, respectively. When expressed as a percentage of energy consumed, cows consuming low-quality forage supplemented with 20% DDGS produced 18.5% less (P=0.01) enteric CH4 relative to cows consuming the low-quality forage only, with emissions of 5.3±0.38 and 6.5±0.33% GEI, respectively. Mature beef cows maintained at the same physiological status and dietary regime produced 26.8% less (P=0.001) enteric CH4 (7.1±0.30 vs. 5.2±0.26% GEI) under prolonged cold as compared with thermal neutral conditions. Based on these results, enteric CH4 emissions for the Canadian cow herd that is overwintered outdoors may be overestimated using current International Panel on Climate Change (IPCC) methodology.

2014 ◽  
Vol 94 (4) ◽  
pp. 557-570 ◽  
Author(s):  
Chanhee Lee ◽  
Karen A. Beauchemin

Lee, C. and Beauchemin, K. A. 2014. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94: 557–570. The purpose of this review is to discuss the risks and benefits of using supplementary nitrate to reduce enteric methane emissions in ruminants based on the results of a meta-analysis. The meta-analysis confirmed possible nitrate poisoning triggered by higher blood methemoglobin levels with increasing nitrate consumption of ruminants: methemoglobin (%)=41.3×nitrate [g kg−1 body weight (BW) d−1]+1.2; R 2=0.76, P<0.001. However, acclimatizing animals to nitrate reduced the toxicity of nitrate: methemoglobin (%)=4.2×nitrate (g kg−1 BW d−1)+0.4, R 2=0.76, P=0.002. Animals fed nitrate reduced enteric methane emissions in a dose-response manner: methane [g kg−1 dry matter intake (DMI)]=−8.3×nitrate (g kg−1 BW d−1)+15.2, R 2=0.80, P<0.001. The reduction of enteric methane emissions due to supplementary nitrate was effective and consistent in both in vitro and in vivo studies and also persistent in several long-term studies. Dry matter intake and live weight gain (LWG) of cattle were not affected by nitrate: DMI change, R 2=0.007, P=0.65; LWG change, R 2=0.03, P=0.31. It is anticipated that supplementary nitrate as a substitute for urea may change urinary nitrogen composition in a manner that increases ammonia and nitrous oxide emissions from manure. Furthermore, supplementary nitrate may have various physiological roles in nitric oxide metabolism in ruminants. In conclusion, supplementary nitrate is a viable means of mitigating enteric methane emissions due to its consistent and persistent efficacy. Risk of toxicity can be lowered by gradual acclimation of animals to nitrate. However, lowered methane production may not re-direct additional metabolizable energy towards animal production.


2016 ◽  
Vol 99 (10) ◽  
pp. 7945-7955 ◽  
Author(s):  
C. Muñoz ◽  
P.A. Letelier ◽  
E.M. Ungerfeld ◽  
J.M. Morales ◽  
S. Hube ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 195-196
Author(s):  
Ermias Kebreab ◽  
Mallory Honan ◽  
Breanna Roque ◽  
Juan Tricarico

Abstract Livestock production contributed 3.9% to the total greenhouse gas (GHG) emission from the US in 2018. Most studies to mitigate GHG from livestock are focused on enteric methane because it contributes about 70% of all livestock GHG emissions. Mitigation options can be broadly categorized into dietary and rumen manipulation. Enteric methane emissions are strongly correlated to dry matter intake and somewhat sensitive to diet composition. Dietary manipulation methods include increasing feed digestibility, such as concentrate to forage ratio, or increasing fats and oils, which are associated with lower methane emissions. These reduce digestible fiber that are positively related to methane production and more energy passing the rumen without being degraded, respectively. Rumen manipulation through feed additives can be further classified based on the mode of action: 1. rumen environment modifiers indirectly affecting emissions and 2. direct methanogenesis inhibitors. The rumen environment modifiers act on the conditions that promote methanogenesis. These include ionophores, plant bioactive compounds such as essential oils and tannins, and nitrate rich feeds that serve as alternative hydrogen sinks and directly compete with methanogens thereby reducing methane emissions. The inhibitor category include 3-nitroxypropanol and seaweeds containing halogenated compounds. The former was reported to reduce enteric methane emissions (g/d) by 39% in dairy and 22% in beef cattle. Seaweed, in particular Asparagopsis spp., reduced emissions intensity (g/kg milk) by up to 67% in dairy and emissions yield (g/kg dry matter intake) by up to 98% in beef cattle. Because inhibitors are structural analogs of methane, their mode of action is through competitive inhibition of the methyl transfer reaction catalyzed by methyl coenzyme-M reductase, the last enzyme in methanogenesis. The combination of dietary and rumen manipulation options, including feed additives, is expected to reduce enteric methane emissions by over 30% in the next decade without compromising animal productivity and health.


2019 ◽  
Vol 62 (6) ◽  
pp. 1455-1465
Author(s):  
Richard W. Todd ◽  
Corey Moffet ◽  
James P. S. Neel ◽  
Kenneth E. Turner ◽  
Jean L. Steiner ◽  
...  

HighlightsEnteric methane (CH4) from beef cows on pasture was measured over three seasons using three methods.Methods yielded similar results during the summer grazing season but diverged in autumn and winter seasons.Emission averaged 0.34, 0.27, and 0.29 kg CH4 cow-1 during lactation, mid-gestation, and late gestation, respectively.Annualized enteric methane emission rate for a beef cow herd grazing tallgrass prairie was 0.32 kg d-1 cow-1.Abstract. Methane (CH4) is an important greenhouse gas, and about 20% of the carbon dioxide equivalent (CO2e) greenhouse gases emitted by U.S. agriculture are attributed to enteric CH4 produced by grazing beef cattle. Grazing cattle are mobile point sources of methane and present challenges to quantifying the enteric methane emission rate (MER). In this study, we applied three methods to measure herd-scale and individual-animal MER for a herd of beef cows grazing a native tallgrass prairie: a point source method that used forward-mode dispersion analysis and open-path lasers and cow locations, an open chamber breath analysis system (GreenFeed), and an eddy covariance ratio method that used the ratio of CH4 and CO2 mass fluxes. Three campaigns were conducted during the early season (July), late season (October), and dormant season (February). The point source and GreenFeed methods yielded similar MER (±SD) values during the early season campaign: 0.38 ±0.04 and 0.34 ±0.05 kg d-1 cow-1, respectively. However, the MER values from the two methods diverged in subsequent seasons. The GreenFeed MER decreased through the late and dormant seasons to 0.23 ±0.03 and 0.19 ±0.03 kg d-1 cow-1, respectively. In contrast, the point source MER stayed the same during the late season and increased during the dormant season to 0.41 ±0.07 kg d-1 cow-1. The CH4:CO2 ratio method, which was used only during the dormant season, yielded a MER of 0.29 ±0.05 kg d-1 cow-1. The point source and GreenFeed methods measured different MER (integrated herd-scale versus a subset of individual animals) and likely sampled methane emissions at different times during the day. We conclude that the point source method tended to overestimate emissions, and the GreenFeed method tended to underestimate emissions. Enteric methane emissions from beef cows over the three grazing seasons averaged 0.39 and 0.25 kg d-1 cow-1 as measured by the point source and GreenFeed methods, respectively. An annualized enteric MER for a beef cow herd grazing tallgrass prairie was 0.32 kg d-1 cow-1. Quantifying enteric methane emissions from grazing beef cows remains a challenge because of the mobile, often dispersed behavior of grazing cattle and the dynamic interactions of forage quality, dry matter intake, and changing physiological state of cows during the year. Keywords: Beef cows, Enteric methane, Forage quality, Grazing, Tallgrass prairie.


2018 ◽  
Vol 58 (3) ◽  
pp. 517 ◽  
Author(s):  
A. F. Ribeiro ◽  
J. D. Messana ◽  
A. José Neto ◽  
J. F. Lage ◽  
G. Fiorentini ◽  
...  

Forty young Nellore bulls were used to determine the effects of different sources of forage in concentrate-rich diets containing crude glycerine on feed intake, performance, and enteric methane emissions. Ten animals (397 ± 34 kg and 20 ± 2 months of age) were slaughtered to estimate the initial carcass weights, and the remaining 30 animals (417 ± 24.7) were randomly assigned to three treatments with 10 replicates. The treatments consisted of three different sources of forage [NDF from forage (fNDF) was fixed 15% of dry matter]; corn silage, sugarcane, and sugarcane bagasse; in diets rich in concentrates with 10% dry matter crude glycerine. There were no differences in the intake of dry matter, organic matter, crude protein, neutral detergent fibre, gross energy, or metabolisable energy. No effects of the type of forage were observed on performance or enteric methane emissions. These results suggest that alternatives to corn silage that have high fibre content, such as sugarcane and sugarcane bagasse, do not significantly affect the intake, performance, or enteric methane emissions of young Nellore bulls.


2008 ◽  
Vol 88 (4) ◽  
pp. 721-724 ◽  
Author(s):  
J. J. McKinnon ◽  
A. M. Walker

Replacement of barley grain with wheat-based dried distillers’ (DDGS) grain with solubles at 25 and 50% of the total ration dry matter increased average daily gain and gain efficiency of backgrounding steers. No differences in dry matter intake or composition of gain were observed. The results of this trial indicate that barley grain can be replaced by wheat-based DDGS at up to 50% of the diet dry matter in backgrounding rations without any adverse effects on cattle performance. The economics of feeding DDGS at these levels would depend on availability and price relative to barley and other cereal grains. Key words: Dried distillers' grain, beef cattle, feedlot, ethanol, by-products


2021 ◽  
Vol 29 (1-2) ◽  
pp. 1-9
Author(s):  
Juan Vargas ◽  
Martha Lucia Pabon ◽  
Juan E. Carulla

Dietaryinclusionof contain­tanninlegumes mayreduce enteric methane emissioninruminants. Toevaluate methane emissions fromsheep fed with a kikuyu grass (Cenchrus clandestinus) diet partially substitutedwith lotus(Lotus uliginosus), twelve growing lambs, with 23 ± 2 kg average liveweight, were assigned randomly totwo treatments and with three measurement periods in a switchover design. Treatments consisted of 100 %kikuyuhay or 70 %kikuyu hay: 30 %lotus hay and with 6 lambs per treatment. Each of three periods lasted 20 d, where thefirst 15 d were for acclimatization and the last 5 d for measurements. Lambs were placed in metabolic cages and fedonce a day (8 AM) at 90 %of their voluntary feedintake, with free access to drinking water. Feedintake, fecalproductionandfeeddigestibility were determinedat eachperiod. Methane productionwas measuredfor eachtreatment group of 6 lambs using the poly­tunnel technique. Legume addition reduced total methane production(27.6vs.23.1 g animal­1; p < 0.01), methane production per dry matter intake (DMI) (18.8 vs. 12.2 g kg­1DMI; p <0.01), methane production per digestible OM(DOM) (36.1vs. 23.4 g kg­1DOM; p < 0.01) and methane productionper digestible NDF (DNDF) (43.5vs. 34.0 g kg­1DNDF; p < 0.01). In conclusion, lotus inclusion in pasture systemscould be a suitable legume to reduce methane emissions in grazing systems.


Author(s):  
L R Thompson ◽  
I C F Maciel ◽  
P D R Rodrigues ◽  
K A Cassida ◽  
J E Rowntree

Abstract Greenhouse gas emissions (GHG) from the beef industry is largely attributed to the grazing sector, specifically from beef cattle enteric methane emissions. Therefore, the study objective was to examine how forage diversity impacts forage productivity, nutritive value, animal performance and enteric methane emissions. This study occurred over three consecutive grazing seasons (2018 to 2020) and compared two common Midwest grazing mixtures: 1) a simple, 50:50 alfalfa:orchardgrass mixture (SIMP) and 2) a botanically diverse, cool-season species mixture (COMP). Fifty-six steers and heifers were adapted to an Automated Head Chamber System each year (AHCS; C-Lock Inc., Rapid City, SD) and stratified into treatment groups based on acclimation visitation. Each treatment consisted of four pastures, three 3.2-ha and one 1.6-ha, with 8 and 4 animals each, respectively. Forage production was measured bi-weekly in pre-and post-grazed paddocks, and forage nutritive value was analyzed using near-infrared reflectance spectroscopy (NIRS). Shrunk body weights were taken monthly to determine animal performance. Forage availability did not differ between treatments (P = 0.69) but tended lower in 2018 (P = 0.06; 2.40 t dry matter ha -1) than 2019 (2.92 t dry matter ha -1) and 2020 (P = 0.10; 2.81 t dry matter ha -1). Crude protein was significantly lower for COMP in 2018 compared to SIMP. Forage acid detergent fiber content was significantly lower for the COMP mixture (P = 0.02). The COMP treatment resulted higher dry matter digestibility (IVDMD48) in 2018 and 2019 compared to the SIMP treatment (P &lt; 0.01). Animal performance did not differ between treatments (P &gt; 0.50). There was a tendency for the COMP treatment to have lower enteric CH4 production on a g d -1 basis (P = 0.06), but no difference was observed on an emission intensity basis (g CH4 kg -1 gain; P = 0.56). These results would indicate that adoption of the complex forage mixture would not result in improved forage productivity, animal performance, or reduced emission intensity compared to the simple forage mixture.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jennifer L. Owens ◽  
Ben W. Thomas ◽  
Jessica L. Stoeckli ◽  
Karen A. Beauchemin ◽  
Tim A. McAllister ◽  
...  

Abstract The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125–200 mg kg−1 dry matter (DM) feed], or both 3-NOP (125–200 mg kg−1 DM) and monensin (33 mg kg−1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.


Sign in / Sign up

Export Citation Format

Share Document