scholarly journals Inverted Topp-Leone Distribution: Contribution to a Family of J-Shaped Frequency Functions in Presence of Random Censoring

Author(s):  
Hiba Zeyada Muhammed ◽  
Essam Abd Elsalam Muhammed

In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-Leone distribution shape parameter are studied when the sample is complete and random censored. The maximum likelihood estimator (MLE) and Bayes estimator of the unknown parameter are proposed. The Bayes estimates (BEs) have been computed based on the squared error loss (SEL) function and using Markov Chain Monte Carlo (MCMC) techniques. The asymptotic, bootstrap (p,t), and highest posterior density intervals are computed. The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte Carlo simulation is performed to compare the performances of the proposed methods and one real data set has been analyzed for illustrative purposes.

2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.


2021 ◽  
Vol 6 (10) ◽  
pp. 10789-10801
Author(s):  
Tahani A. Abushal ◽  

<abstract><p>In this paper, the problem of estimating the parameter of Akash distribution applied when the lifetime of the product follow Type-Ⅱ censoring. The maximum likelihood estimators (MLE) are studied for estimating the unknown parameter and reliability characteristics. Approximate confidence interval for the parameter is derived under the s-normal approach to the asymptotic distribution of MLE. The Bayesian inference procedures have been developed under the usual error loss function through Lindley's technique and Metropolis-Hastings algorithm. The highest posterior density interval is developed by using Metropolis-Hastings algorithm. Finally, the performances of the different methods have been compared through a Monte Carlo simulation study. The application to set of real data is also analyzed using proposed methods.</p></abstract>


2019 ◽  
Vol 97 (4) ◽  
pp. 352-361 ◽  
Author(s):  
Haley A. Ohms ◽  
Alix I. Gitelman ◽  
Chris E. Jordan ◽  
Dave A. Lytle

Partial migration, the phenomenon in which animal populations are composed of both migratory and nonmigratory individuals, is widespread among migrating animals. The proportion of migrants in these populations has direct influences on population genetics and dynamics, ecosystem dynamics, mating systems, evolution, and responses to environmental change, yet there are very few studies that measure the proportion of migrants. This is because existing methods to estimate the proportion of migrants are time-consuming and expensive. In this paper, we demonstrate a new method for estimating the proportion of migrants in a population based on sex ratio measurements. Many partially migratory taxa exhibit sex-biased migration or residency, and in these cases, the sex ratios of migrants and nonmigrants are fundamentally related to the proportion of migrants in the population. We define this relationship quantitatively and show how it can be used to infer the proportion of migrants in a population through a process we term “sex-ratio balancing”. We obtain Bayesian estimates of proportion of migrants and quantify the uncertainty in these estimates with highest posterior density intervals. Lastly, we validate the sex-ratio balancing approach with a Chinook salmon (Oncorhynchus tshawytscha Walbaum in Artedi, 1792) data set. Sex-ratio balancing holds promise as a tool for quantifying partial migration and filling a key data gap about partially migratory taxa.


2018 ◽  
Vol 47 (3) ◽  
pp. 40-62 ◽  
Author(s):  
Ankita Chaturvedi ◽  
Sanjay Kumar Singh ◽  
Umesh Singh

This article presents the procedures for the estimation of the parameter of Rayleighdistribution based on Type-II progressive hybrid censored fuzzy lifetime data. Classicalas well as the Bayesian procedures for the estimation of unknown model parameters has been developed. The estimators obtained here are Maximum likelihood (ML) estimator, Method of moments (MM) estimator, Computational approach (CA) estimator and Bayes estimator. Highest posterior density (HPD) credible intervals of the unknown parameter are obtained by using Markov Chain Monte Carlo (MCMC) technique. For numerical illustration, a real data set has been considered.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 937 ◽  
Author(s):  
Ying Xie ◽  
Wenhao Gui

Estimating the accurate evaluation of product lifetime performance has always been a hot topic in manufacturing industry. This paper, based on the lifetime performance index, focuses on its evaluation when a lower specification limit is given. The progressive first-failure-censored data we discuss have a common log-logistic distribution. Both Bayesian and non-Bayesian method are studied. Bayes estimator of the parameters of the log-logistic distribution and the lifetime performance index are obtained using both the Lindley approximation and Monte Carlo Markov Chain methods under symmetric and asymmetric loss functions. As for interval estimation, we apply the maximum likelihood estimator to construct the asymptotic confidence intervals and the Metropolis–Hastings algorithm to establish the highest posterior density credible intervals. Moreover, we analyze a real data set for demonstrative purposes. In addition, different criteria for deciding the optimal censoring scheme have been studied.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1209
Author(s):  
Jiao Yu ◽  
Wenhao Gui ◽  
Yuqi Shan

Entropy is an uncertainty measure of random variables which mathematically represents the prospective quantity of the information. In this paper, we mainly focus on the estimation for the parameters and entropy of an Inverse Weibull distribution under progressive first-failure censoring using classical (Maximum Likelihood) and Bayesian methods. For Bayesian approaches, the Bayesian estimates are obtained based on both asymmetric (General Entropy, Linex) and symmetric (Squared Error) loss functions. Due to the complex form of Bayes estimates, we cannot get an explicit solution. Therefore, the Lindley method as well as Importance Sampling procedure is applied. Furthermore, using Importance Sampling method, the Highest Posterior Density credible intervals of entropy are constructed. As a comparison, the asymptotic intervals of entropy are also gained. Finally, a simulation study is implemented and a real data set analysis is performed to apply the previous methods.


2020 ◽  
Vol 19 (1) ◽  
pp. 142-160
Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

 In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check method to discuss the issue of model compatibility. A real data set is considered for illustration under uniform and gamma priors.  


Author(s):  
F. Shahsanaei ◽  
A. Daneshkhah

This paper provides Bayesian and classical inference of Stress–Strength reliability parameter, [Formula: see text], where both [Formula: see text] and [Formula: see text] are independently distributed as 3-parameter generalized linear failure rate (GLFR) random variables with different parameters. Due to importance of stress–strength models in various fields of engineering, we here address the maximum likelihood estimator (MLE) of [Formula: see text] and the corresponding interval estimate using some efficient numerical methods. The Bayes estimates of [Formula: see text] are derived, considering squared error loss functions. Because the Bayes estimates could not be expressed in closed forms, we employ a Markov Chain Monte Carlo procedure to calculate approximate Bayes estimates. To evaluate the performances of different estimators, extensive simulations are implemented and also real datasets are analyzed.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1219 ◽  
Author(s):  
Shuhan Liu ◽  
Wenhao Gui

As it is often unavoidable to obtain incomplete data in life testing and survival analysis, research on censoring data is becoming increasingly popular. In this paper, the problem of estimating the entropy of a two-parameter Lomax distribution based on generalized progressively hybrid censoring is considered. The maximum likelihood estimators of the unknown parameters are derived to estimate the entropy. Further, Bayesian estimates are computed under symmetric and asymmetric loss functions, including squared error, linex, and general entropy loss function. As we cannot obtain analytical Bayesian estimates directly, the Lindley method and the Tierney and Kadane method are applied. A simulation study is conducted and a real data set is analyzed for illustrative purposes.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mohammed Obeidat ◽  
Amjad Al-Nasser ◽  
Amer I. Al-Omari

This paper studies estimation of the parameters of the generalized Gompertz distribution based on ranked-set sample (RSS). Maximum likelihood (ML) and Bayesian approaches are considered. Approximate confidence intervals for the unknown parameters are constructed using both the normal approximation to the asymptotic distribution of the ML estimators and bootstrapping methods. Bayes estimates and credible intervals of the unknown parameters are obtained using differential evolution Markov chain Monte Carlo and Lindley’s methods. The proposed methods are compared via Monte Carlo simulations studies and an example employing real data. The performance of both ML and Bayes estimates is improved under RSS compared with simple random sample (SRS) regardless of the sample size. Bayes estimates outperform the ML estimates for small samples, while it is the other way around for moderate and large samples.


Sign in / Sign up

Export Citation Format

Share Document