scholarly journals Inferences for Weibull parameters under progressively first-failure censored data with binomial random removals

2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mohammed Obeidat ◽  
Amjad Al-Nasser ◽  
Amer I. Al-Omari

This paper studies estimation of the parameters of the generalized Gompertz distribution based on ranked-set sample (RSS). Maximum likelihood (ML) and Bayesian approaches are considered. Approximate confidence intervals for the unknown parameters are constructed using both the normal approximation to the asymptotic distribution of the ML estimators and bootstrapping methods. Bayes estimates and credible intervals of the unknown parameters are obtained using differential evolution Markov chain Monte Carlo and Lindley’s methods. The proposed methods are compared via Monte Carlo simulations studies and an example employing real data. The performance of both ML and Bayes estimates is improved under RSS compared with simple random sample (SRS) regardless of the sample size. Bayes estimates outperform the ML estimates for small samples, while it is the other way around for moderate and large samples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249028
Author(s):  
Ehsan Fayyazishishavan ◽  
Serpil Kılıç Depren

The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution in survival analysis. This paper investigates the estimation of the parameters of this distribution by using lower records values. The maximum likelihood estimator (MLE) procedure of the parameters is considered, and the Fisher information matrix of the unknown parameters is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and the corresponding credible intervals are obtained by using the Gibbs sampling technique. Two real data set is provided to illustrate the proposed methods.


Author(s):  
Hiba Zeyada Muhammed ◽  
Essam Abd Elsalam Muhammed

In this paper, Bayesian and non-Bayesian estimation of the inverted Topp-Leone distribution shape parameter are studied when the sample is complete and random censored. The maximum likelihood estimator (MLE) and Bayes estimator of the unknown parameter are proposed. The Bayes estimates (BEs) have been computed based on the squared error loss (SEL) function and using Markov Chain Monte Carlo (MCMC) techniques. The asymptotic, bootstrap (p,t), and highest posterior density intervals are computed. The Metropolis Hasting algorithm is proposed for Bayes estimates. Monte Carlo simulation is performed to compare the performances of the proposed methods and one real data set has been analyzed for illustrative purposes.


Author(s):  
Mazen Nassar ◽  
Ahmed Z. Afify ◽  
Mohammed Shakhatreh

This paper addresses the estimation of the unknown parameters of the alphapower exponential distribution (Mahdavi and Kundu, 2017) using nine frequentist estimation methods. We discuss the nite sample properties of the parameterestimates of the alpha power exponential distribution via Monte Carlo simulations. The potentiality of the distribution is analyzed by means of two real datasets from the elds of engineering and medicine. Finally, we use the maximumlikelihood method to derive the estimates of the distribution parameters undercompeting risks data and analyze one real data set.


2020 ◽  
Vol 8 (1) ◽  
pp. 80-97
Author(s):  
Renu Garg ◽  
Madhulika Dube ◽  
Hare Krishna

This article deals with the estimation of parameters and reliability characteristics of Lindley distribution underrandom censoring. Expected time on test based on randomly censored data is obtained. The maximum likelihood estimators of the unknown parameters and reliability characteristics are derived. The asymptotic, bootstrap p and bootstrap t confidence intervals of the parameters are constructed. The Bayes estimators of the parameters and reliability characteristics under squared error loss function using non-informative and gamma informative priors are obtained. For computing of Bayes estimates, Lindley approximation and MCMC methods are considered. Highest posterior density (HPD) credible intervals of the parameters are obtained using MCMC method. Various estimation procedures are compared using a Monte Carlo simulation study. Finally, a real data set is analyzed for illustration purposes.


2019 ◽  
Vol 23 (Suppl. 6) ◽  
pp. 1839-1847
Author(s):  
Caner Tanis ◽  
Bugra Saracoglu

In this paper, it is considered the problem of estimation of unknown parameters of log-Kumaraswamy distribution via Monte-Carlo simulations. Firstly, it is described six different estimation methods such as maximum likelihood, approximate bayesian, least-squares, weighted least-squares, percentile, and Cramer-von-Mises. Then, it is performed a Monte-Carlo simulation study to evaluate the performances of these methods according to the biases and mean-squared errors of the estimators. Furthermore, two real data applications based on carbon fibers and the gauge lengths are presented to compare the fits of log-Kumaraswamy and other fitted statistical distributions.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1099
Author(s):  
Xiaolin Shi ◽  
Yimin Shi

This paper investigates the statistical inference of inverse power Lomax distribution parameters under progressive first-failure censored samples. The maximum likelihood estimates (MLEs) and the asymptotic confidence intervals are derived based on the iterative procedure and asymptotic normality theory of MLEs, respectively. Bayesian estimates of the parameters under squared error loss and generalized entropy loss function are obtained using independent gamma priors. For Bayesian computation, Tierney–Kadane’s approximation method is used. In addition, the highest posterior credible intervals of the parameters are constructed based on the importance sampling procedure. A Monte Carlo simulation study is carried out to compare the behavior of various estimates developed in this paper. Finally, a real data set is analyzed for illustration purposes.


Author(s):  
Mervat Abd Elaal ◽  
Hind Alzahrani

In this paper two new bivariate Pareto Type I distributions are introduced. The first distribution is based on copula, and the second distribution is based on mixture of and copula. Maximum likelihood and Bayesian estimations are used to estimate the parameters of the proposed distribution. A Monte Carlo Simulation study is carried out to study the behavior of the proposed distributions. A real data set is analyzed to illustrate the performance and flexibility of the proposed distributions.


2020 ◽  
Vol 19 (1) ◽  
pp. 142-160
Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

 In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check method to discuss the issue of model compatibility. A real data set is considered for illustration under uniform and gamma priors.  


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 934
Author(s):  
Yuxuan Zhang ◽  
Kaiwei Liu ◽  
Wenhao Gui

For the purpose of improving the statistical efficiency of estimators in life-testing experiments, generalized Type-I hybrid censoring has lately been implemented by guaranteeing that experiments only terminate after a certain number of failures appear. With the wide applications of bathtub-shaped distribution in engineering areas and the recently introduced generalized Type-I hybrid censoring scheme, considering that there is no work coalescing this certain type of censoring model with a bathtub-shaped distribution, we consider the parameter inference under generalized Type-I hybrid censoring. First, estimations of the unknown scale parameter and the reliability function are obtained under the Bayesian method based on LINEX and squared error loss functions with a conjugate gamma prior. The comparison of estimations under the E-Bayesian method for different prior distributions and loss functions is analyzed. Additionally, Bayesian and E-Bayesian estimations with two unknown parameters are introduced. Furthermore, to verify the robustness of the estimations above, the Monte Carlo method is introduced for the simulation study. Finally, the application of the discussed inference in practice is illustrated by analyzing a real data set.


Sign in / Sign up

Export Citation Format

Share Document