scholarly journals Genetic structure and diversity between and within African and American oil palm species based on microsatellite markers

2019 ◽  
Vol 20 (5) ◽  
Author(s):  
AZIS NATAWIJAYA ◽  
SINTHO W ARDIE ◽  
MUHAMAD SYUKUR ◽  
ISMAIL MASKROMO ◽  
ALEX HARTANA ◽  
...  

Abstract. Natawijaya A, Ardie SW, Syukur M, Maskromo I, Hartana A, Sudarsono S. 2019. Genetic structure and diversity between and within African and American oil palm species based on microsatellite markers. Biodiversitas 20: 1233-1240. The genus Elaeis consists of only two species, Elaeis guineensis Jacq. (the African oil palm species) and E. oleifera (HBK) Cortes (the American oil palm species). E. guineensis (E.g) is widely cultivated in southeast Asia and Africa, whereas E. oleifera (E.o) is naturally existed and cultivated in Central and South America. The objectives of this research were to analyze genetic diversity of eight groups of E.g and two groups of E.o using co-dominant genetic markers (SSRs) and evaluate their genetic structures. A total of 27 SSR loci was used to genotype a total of 128 accessions of African oil palm species (E.g) belonging to three different types (Dura, Pisifera and Tenera) and eight genetic backgrounds (Dumpy Dura and Deli Dura; Avros, Dumpy Avros, Binga, and Angola Pisifera; and Angola and Dumpy Avros Tenera) and 64 accessions of E.o collected from two different regions (Tefe and Manaus). The genotype data were used to calculate the population genetic diversity and structures for each oil palm species using the appropriate software. Results of the analysis indicated although they belonged to two different species, E.g and E.o shared many of the same SSR alleles in their genome and only contain few species-specific SSR alleles. Most of the evaluated genetic parameters were similar between E.g and E.o oil palm species but E.o has higher average number of effective allele than that of E.g. The calculated genetic variance is mostly belonged to the within-species variance source while the between species is relatively small. The phylogenetic tree and structure analysis reveal the high genetic variability among the evaluated oil palm groups which would be beneficial for future breeding program at Mekarsari Research Station. The tested E.o specific alleles were effective for identifying introgression lines between Eo × E.g // E.g carrying the E.o chromosome fragments. Therefore, these E.o specific alleles could be used in oil palm backcrossing program to monitor the introgression process.

Genome ◽  
2001 ◽  
Vol 44 (3) ◽  
pp. 413-425 ◽  
Author(s):  
N Billotte ◽  
A M Risterucci ◽  
E Barcelos ◽  
J L Noyer ◽  
P Amblard ◽  
...  

The results of the development of oil palm (Elaeis guineensis Jacq.) microsatellite markers are given step by step, from the screening of libraries enriched in (GA)n, (GT)n, and (CCG)n simple-sequence repeats (SSRs) to the final characterisation of 21 SSR loci. Also published are primer sequences, estimates of allele size range, and expected heterozygosity in E. guineensis and in the closely related species E. oleifera, in which an optimal utility of the SSR markers was observed. Multivariate data analyses showed the ability of SSR markers to efficiently reveal the genetic-diversity structure of the genus Elaeis in accordance with known geographical origins and with measured genetic relationships based on previous molecular studies. High levels of allelic variability indicated that E. guineensis SSRs will be a powerful tool for genetic studies of the genus Elaeis, including variety identification and intra- or inter-specific genetic mapping. PCR amplification tests on a subset of 16 other palm species and allele-sequence data showed that E. guineensis SSRs are putative transferable markers across palm taxa. In addition, phenetic information based on SSR flanking region sequences makes E. guineensis SSR markers a potentially useful molecular resource for any researcher studying the phylogeny of palm taxa.Key words: Palmae, SSR, phenetic analysis, phylogeny.


Bragantia ◽  
2018 ◽  
Vol 77 (4) ◽  
pp. 546-556
Author(s):  
Christian Camilo Castañeda Cardona ◽  
Yacenia Morillo Coronado ◽  
Ana Cruz Morillo Conronado ◽  
Iván Ochoa

2021 ◽  
Author(s):  
Nick Pasiecznik

Abstract E. guineensis, the oil palm or African oil palm, is native to equatorial Africa, although the only other species in the genus (E. oleifera) is indigenous to South and Central America. E. guineensis, however, is the major economic species: fruits of E. oleifera have a much lower oil content and are used only locally (Westphal and Jansen, 1989). However, E. guineensis was introduced into South America during the time of the slave trade, and naturalized groves are reported in coastal areas of Brazil near Bélem. In the mid-1800s it was introduced to South-East Asia via the Botanic Gardens in Bogor, Indonesia. The first oil-palm estates in Sumatra (since 1911) and Malaysia (since 1917) used plant material from second- and third-generation descendants of the original Bogor palms, from which one of the breeding populations, the Deli Dura, is derived (Westphal and Jansen, 1989). After soyabean, E. guineensis is the second most important crop worldwide for the supply of edible vegetable oil. Palm oil kernel, for example, is a major agricultural export from Malaysia, and South-East Asia is the main area of production.E. guineensis yields two types of oil: palm oil from the fleshy mesocarp, and palm-kernel oil from the kernel, in a volume ratio 10:1. Most palm oil is used in food preparation (margarines, and industrial frying oils used to prepare snack foods, etc.). Palm-kernel oil is similar in composition and properties to coconut oil, and is used in confectionery, where its higher melting point is particularly useful. It is also used in the manufacture of lubricants, plastics, cosmetics and soaps. The oil palm is a monoecious, erect, single-stemmed tree usually 20-30 m high. The root system is shallow and adventitious, forming a dense mat in the top 35 cm of the soil. The main stem is cylindrical, up to 75 cm diameter. E. guineensis palm fronds are not as suitable for thatching as other palm species, as the leaflets attach to the rachis at two angles. The oil palm is indigenous to the lowland humid tropics, and thrives on a good moisture supply and relatively open conditions. It can tolerate fluctuating water-tables with periods of standing water, although continuously flooded conditions are unsuitable. Sites often selected as suitable for oil palm are swamps, riverbanks, or sites considered too moist for tropical rain forest trees. Rainfall is often the major factor limiting production in plantations: highest yields occur where rainfall is evenly distributed throughout the year, with an optimum of 150 mm per month (Westphal and Jansen, 1989). Oil palms can grow on a variety of soil types, from sandy soils to lateritic red and yellow podzols, young volcanic soils, alluvial clays and peat soils; water-holding capacity appears to be the most important soil criterion. It is a demanding crop in terms of soil nutrients. The oil palm also has potential for incorporation into agroforestry practices. Traditional oil palm management in some areas of West Africa often incorporated both pure oil palm groves (perhaps selectively retained), scattered oil palms within temporary fields, and unexploited oil palms in mixed forest (Gupta, 1993). Harvesting of fruits usually starts about 2½ years after field planting; bunches ripen throughout the year and so harvesting usually takes place at intervals of 2 to 3 weeks in any particular area. Because oil palm is so responsive to environmental conditions, yields may vary greatly. However, over the lifetime of a palm tree, yields generally rise to a maximum in the first 6-8 years (after field planting), and will subsequently decline slowly. In Malaysia and Sumatra, well-managed plantations yield between 24 and 32 tonnes/hectare of fruit bunches; the oil yield from this will be between 4.8 and 7 tonnes/hectare. Oil palm plantations are often regarded as a better use of the land than annual food crops in humid tropical areas where soils are prone to leaching: the plantations provide continuous ground cover, and the palm canopy helps protect against soil erosion. Oil palm stems are increasingly used as a raw material for paper and composite board production. This area has big prospects in wood-based industries. It is recommended that more research is undertaken into the properties and utilization. Propagation techniques, the management of pests and diseases, and genetic resources are other areas in which studies could usefully be undertaken.


2018 ◽  
Vol 67 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Gabriel Chaves ◽  
Gustavo Adolfo Ligarreto- Moreno ◽  
Daniel Gerardo Cayon-Salinas

El objetivo de este estudio fue realizar un análisis comparativo de las características físicas y químicas de racimos de genotipos de Elaeis oleifera y de sus híbridos interespecíficos OxG con Elaeis guineensis, determinando los componentes y el potencial del aceite del racimo, y la calidad de los aceites, analizando el contenido de ácidos grasos, vitamina E y carotenos. En el estudio se utilizaron racimos provenientes de inflorescencias sin polinización asistida con la presencia perimetral de E. guineensis. Se utilizó un diseño experimental completamente al azar con tres unidades experimentales, cada una conformada por tres racimos. Los mayores cuajados del fruto se encontraron en el genotipo de E. oleifera Sinú (76,53 %) y el híbrido OxG II (72,64 %). Los potenciales de extracción de aceite fueron superiores en los materiales híbridos OxG destacándose el II (20,82 %). Las palmas E. oleifera presentaron mejores perfiles de ácidos grasos, destacándose los materiales del genotipo Sinú (79,1 % de ácidos grasos insaturados) y los del híbrido II (70,2 %). Para el contenido de vitamina E se confirmó la alta calidad del aceite de los materiales de E. oleifera, sobresaliendo el genotipo Coarí (1.006,7 ppm) y el híbrido II (1.549,6 ppm); el material del genotipo Sinú registró el mayor contenido de carotenos totales (1.524,7 ppm).


2017 ◽  
Vol 5 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Sumita Nag ◽  
Jiban Mitra

Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.


Sign in / Sign up

Export Citation Format

Share Document