scholarly journals Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon

2019 ◽  
Vol 20 (12) ◽  
Author(s):  
Dia Septiani ◽  
HERMAN SURYADI ◽  
Abdul Mun'im ◽  
WIBOWO MANGUNWARDOYO

Abstract. Septiani D, Suryadi H, Mun’im A, Mangunwardoyo W. 2019. Production of cellulase from Aspergillus niger and Trichoderma reesei mixed culture in carboxymethylcellulose medium as sole carbon. Biodiversitas 20: 3539-3544. Cellulase is one of hydrolytic enzymes that breakdown cellulose into glucose. Cellulases are promising to be applied in natural products which may improve the yield of bioactive in plant extract through cellulose depolymerization. Cellulases from mixed culture of Aspergillus niger and Trichoderma reesei can produce a high cellulase activity because of the synergism activity among endoglucanase, exoglucanase, and also β-glucoside. Cellulase production and partial purification of monoculture and mixed culture (1:1) of these fungi on carboxymethylcellulose media were investigated in this study. Total cellulase activity was measured by filter paper assay followed by protein estimation with Bradford method. The crude extract of Aspergillus niger monoculture has the highest cellulase activity (0.131 U/mL, P<005) followed by mixed culture (0.109 U/mL) and Trichoderma reesei (0.106 U/mL). The cellulase activity of partially purified cellulase from mixed culture significantly increased (0.335, 0.348, 0.374 U/mL, P<0.05) compared to crude extract along with stepwise addition of ammonium sulfate. Cellulase activity of mixed culture at 80% ammonium sulfate increase up to 2.238-fold and showed highest value (P<0.05) compared to monocultures. In conclusion, combination of Aspergillus niger and Trichoderma reesei fungi in carboxymethyl cellulose media followed by 80% ammonium sulfate precipitation can be a promising cellulase production with high cellulase activity.

RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56239-56246 ◽  
Author(s):  
Chen Zhao ◽  
Lu Deng ◽  
Hao Fang ◽  
Shaolin Chen

Mixed culture ofTrichoderma reeseiandAspergillus nigerwas employed to accomplish on-site cellulase production where cellulases were applied directly to the enzymatic hydrolysis of pretreated corn stover.


Author(s):  
Vita Wonoputri ◽  
Subiantoro Subiantoro ◽  
Made Tri Ari Penia Kresnowati ◽  
Ronny Purwadi

In this study, agriculture waste palm empty fruit bunch (EFB) was used as carbon/cellulose source in solid state fermentation for cheaper cellulase production. Fermentation operation parameters, such as: solid to liquid ratio, temperature, and pH, were varied to study the effect of those parameters towards crude cellulase activity. Two different fungi organisms, Trichoderma viride and Trichoderma reesei were used as the producers. Extracellular cellulase enzyme was extracted using simple contact method using citrate buffer. Assessment of the extracted cellulase activity by filter paper assay showed that Trichoderma viride is the superior organism capable of producing higher cellulase amount compared to Trichoderma reesei at the same fermentation condition. The optimum cellulase activity of 0.79 FPU/g dry substrate was obtained when solid to liquid ratio used for the fermentation was 1:1, while the optimum fermentation temperature and pH were found to be 30 °C and 5.5, respectively. The result obtained in this research showed the potential of EFB utilization for enzyme production. Copyright © 2018 BCREC Group. All rights reservedReceived: 14th December 2017; Revised:29th July 2018; Accepted: 3rd August 2018How to Cite: Wonoputri, V., Subiantoro, S., Kresnowati, M.T.A.P., Purwadi, R. (2018). Solid State Fermentation Parameters Effect on Cellulase Production from Empty Fruit Bunch. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 553-559 (doi:10.9767/bcrec.13.3.1964.553-559)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.1964.553-559 


2018 ◽  
Vol 25 (3) ◽  
pp. 115
Author(s):  
Abdullah Abdullah ◽  
Hamid Hamid ◽  
Marcelinus Christwardana ◽  
H. Hadiyanto

Cellulase is a very important enzyme for lignocelluloses based ethanol production. Bagasse contains mainly cellulose (57.76%), hemicellulose (12.44%), lignin (21.34%), and others (7.96%). Lignocellulosic material has been considered as the good option for cellulase production because it is cheap and already available in a huge amount. The objective of this research was to produce cellulase enzyme and to optimize it by using response surface methodology. The bagasse with water content of 80% was incubated with 2 ml inoculum of Aspergillus niger ITBCC L74 in a 250 ml Erlenmeyer flask. After reaching the specified time the enzyme was extracted and then determined for its activity. Effect of process parameters such as pH, urea and MgCl2 addition were studied. The optimal cellulase activity was achieved at urea concentration of 4.5% (w/w), MgCl2 concentration of 1 mM and pH of 3.5, with maximum enzyme activity was 0.630 U/gr.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
C. K. Lee ◽  
I. Darah ◽  
C. O. Ibrahim

Novel design solid state bioreactor, FERMSOSTAT, had been evaluated in cellulase production studies using local isolate Aspergillus niger USM AI 1 grown on sugarcane bagasse and palm kernel cake at 1 : 1 (w/w) ratio. Under optimised SSF conditions of 0.5 kg substrate; 70% (w/w) moisture content; 30∘C; aeration at 4 L/h·g fermented substrate for 5 min and mixing at 0.5 rpm for 5 min, about 3.4 U/g of Filter paper activity (FPase) was obtained. At the same time, comparative studies of the enzymes production under the same SSF conditions indicated that FPase produced by A. niger USM AI 1 was about 35.3% higher compared to Trichoderma reesei. This shows that the performance of this newly designed SSF bioreactor is acceptable and potentially used as prototype for larger-scale bioreactor design.


Author(s):  
Chun Chang ◽  
Guizhuan Xu ◽  
Junfang Yang ◽  
Duo Wang

The cellulase production by Trichoderma viride was optimized using artificial intelligence-based techniques under solid state fermentation. In this study, a back propagation network was designed with Levenberg-Marquardt training algorithm, and the tangent sigmoid and pure linear functions were used as the transfer functions in the hidden and output layers of the ANN, respectively. An artificial neural network coupling genetic algorithms was used to optimize the process parameters, which include the mass ratio of wheat straw to wheat bran, moisture content and fermentation time. The ultimate process parameters of optimization were mass ration of wheat straw to wheat bran 2.9, moisture content 69.6 percent, and fermentation time 123.3h. Further test experiment showed that the final cellulase activity can reach to 11.62 U/g, which was the highest value among all the experimental results. This result indicates that the genetic algorithm based on a neural network model is a better optimization method for cellulase production in solid state fermentation. To improve the cellulase production, a mixed culture system of Trichoderma viride and Aspergillus niger was also developed. The cellulase activity increased by 7.40 percent with the addition of Aspergillus niger at 72h.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
P. Saravanan ◽  
R. Muthuvelayudham ◽  
T. Viruthagiri

Optimization of the culture medium for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using mango peel as substrate was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on cellulase production is achieved using Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and CoCl2·6H2O were selected based on their positive influence on cellulase production. The composition of the selected components was optimized using Response Surface Methodology (RSM). The optimum conditions are as follows: Avicel: 25.30 g/L, Soybean cake flour: 23.53 g/L, KH2PO4: 4.90 g/L, and CoCl2·6H2O: 0.95 g/L. These conditions are validated experimentally which revealed an enhanced Cellulase activity of 7.8 IU/mL.


2011 ◽  
Vol 52 (2) ◽  
pp. 258-262 ◽  
Author(s):  
Lanka Sateesh ◽  
Adivikatla Vimala Rodhe ◽  
Shaik Naseeruddin ◽  
Kothagauni Srilekha Yadav ◽  
Yenumulagerard Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document