scholarly journals DNA intensity and genetic diversity of oil palm (Elaeis guineensis) to determine an elite low lipase line

2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Nina Unzila Angkat ◽  
LUTHFI AZIZ MAHMUD SIREGAR ◽  
Mohammad Basyuni ◽  
Dadang Afandi ◽  
INDRA SYAHPUTRA

Abstract. Angkat NU, Siregar LAM, Basyuni M, Afandi D, Syahputra I. 2021. DNA intensity and genetic diversity of oil palm (Elaeis guineensis) to determine an elite low lipase line. Biodiversitas 22: 900-905. The acidification of palm oil due to lipase activity in the mesocarp is assessed under genetic control. Three molecular markers have been established to gauge the lipase gene in oil palm. Lower lipase activity is desired for good quality edible oil. This study aims to identify the genetic diversity by screening groups/families to determine an elite low lipase genotype of oil palm. Genetic diversity and population structure of 15 groups of oil palm were investigated by using three specific markers with GenAlex 6.502 software. Results show that the Polymorphic Informative Content (PIC) value of markers was around 0,985-0,993, which indicates that these markers are effective in determining the diversity of lipase activity in oil palm. Analysis of molecular variance (AMOVA) revealed that genetic diversity varies within individuals (54%), among individuals (31%), and among population (15%). The value of number of alleles (Na), number of effective alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He), and number of allele migration (Nm) indicate that the genetic diversity in this population is relatively low. Phylogenetic analysis identified two main groups as high lipase and low lipase activity groups based on DNA intensity.

Bragantia ◽  
2018 ◽  
Vol 77 (4) ◽  
pp. 546-556
Author(s):  
Christian Camilo Castañeda Cardona ◽  
Yacenia Morillo Coronado ◽  
Ana Cruz Morillo Conronado ◽  
Iván Ochoa

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 56
Author(s):  
Mudge ◽  
Rama ◽  
Pilotti ◽  
Godwin

Oil palm (Elaeis guineensis Jacq.) is a long-term perennial crop of great economic importance to [...]


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255418
Author(s):  
Siou Ting Gan ◽  
Chin Jit Teo ◽  
Shobana Manirasa ◽  
Wei Chee Wong ◽  
Choo Kien Wong

Oil palm (Elaeis guineensis) germplasm is exclusively maintained as ex situ living collections in the field for genetic conservation and evaluation. However, this is not for long term and the maintenance of field genebanks is expensive and challenging. Large area of land is required and the germplasms are exposed to extreme weather conditions and casualty from pests and diseases. By using 107 SSR markers, this study aimed to examine the genetic diversity and relatedness of 186 palms from a Nigerian-based oil palm germplasm and to identify core collection for conservation. On average, 8.67 alleles per SSR locus were scored with average effective number of alleles per population ranging from 1.96 to 3.34 and private alleles were detected in all populations. Mean expected heterozygosity was 0.576 ranging from 0.437 to 0.661 and the Wright’s fixation index calculated was -0.110. Overall moderate genetic differentiation among populations was detected (mean pairwise population FST = 0.120, gene flow Nm = 1.117 and Nei’s genetic distance = 0.466) and this was further confirmed by AMOVA analysis. UPGMA dendogram and Bayesian structure analysis concomitantly clustered the 12 populations into eight genetic groups. The best core collection assembled by Core Hunter ver. 3.2.1 consisted of 58 palms accounting for 31.2% of the original population, which was a smaller core set than using PowerCore 1.0. This core set attained perfect allelic coverage with good representation, high genetic distance between entries, and maintained genetic diversity and structure of the germplasm. This study reported the first molecular characterization and validation of core collections for oil palm field genebank. The established core collection via molecular approach, which captures maximum genetic diversity with minimum redundancy, would allow effective use of genetic resources for introgression and for sustainable oil palm germplasm conservation. The way forward to efficiently conserve the field genebanks into next generation without losing their diversity was further discussed.


2016 ◽  
Vol 154 (7) ◽  
pp. 1253-1253
Author(s):  
Y. T. WONG ◽  
A. KUSHAIRI ◽  
N. RAJANAIDU ◽  
M. OSMAN ◽  
R. WICKNESWARI ◽  
...  

Author(s):  
M Basyuni ◽  
H Prayogi ◽  
L A P Putri ◽  
I Syahputra ◽  
E S Siregar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document