High-Resolution Seismic Stratigraphy of Inner Continental Shelf, Texas Gulf Coast: Long Term and Short Term Cyclicity: ABSTRACT

AAPG Bulletin ◽  
1989 ◽  
Vol 73 ◽  
Author(s):  
John B. Anderson, Mark A. Thomas
1995 ◽  
Vol 155 ◽  
pp. 409-410 ◽  
Author(s):  
Karen R. Pollard ◽  
P. L. Cottrell

The RV Tauri stars are semiregular pulsating variables located in the brightest part of the Cepheid II instability strip. They have a characteristic light curve of alternating deep and shallow minima. A subset of the RV Tauri stars (the RVb subclass) exhibit long-term (500 to 2600 day) light and radial velocity variations. Although it is well established that the short-term variations are due to pulsations, the long-term behaviour is not well understood.BVRI photometry and high-resolution spectra of U Mon (the brightest member of the RVb subclass) were obtained at the Mt John University Observatory (MJUO) between 1990 Aug and 1994 May. The light and colour curves obtained clearly show the long-term variation in U Mon (Fig. 1(a) and (b)). The reddest colours occur slightly later than the long-term minimum in the light curve. The short-term light and colour variations are ‘damped’ at the long-term minimum.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 704 ◽  
Author(s):  
Louis Georgi ◽  
Matthias Kunz ◽  
Andreas Fichtner ◽  
Werner Härdtle ◽  
Karl Reich ◽  
...  

The three-dimensional (3D) morphology of individual trees is critical for light interception, growth, stability and interactions with the local environment. Forest management intensity is a key driver of tree morphology, but how the long-term abandonment of silvicultural measures impacts trunk and crown morphological traits is not fully understood. Here, we take advantage of a long management intensity gradient combined with a high-resolution terrestrial laser scanning (TLS) approach to explore how management history affects the 3D structure of mature beech (Fagus sylvatica L.) trees. The management gradient ranged from long-term (>50 years) and short-term (>20 years) unmanaged to extensively and intensively managed beech stands. We determined 28 morphological traits and quantified the vertical distribution of wood volume along the trunk. We evaluated the differences in tree morphological traits between study stands using Tukey’s HSD test. Our results show that 93% of the investigated morphological traits differed significantly between the study stands. Significant differences, however, emerged most strongly in the stand where forest management had ceased >50 years ago. Furthermore, we found that the vertical distribution of trunk wood volume was highly responsive between stands with different management intensity, leading to a 67% higher taper top height and 30% lower taper of beech trees growing in long-term unmanaged stands compared to those in short-term unmanaged or managed stands. These results have important implications for management intensity decisions. It is suggested that the economic value of individual beech trees from long-term unmanaged forests can be expected to be very high. This might also translate to beech forests that are extensively managed, but we found that a few decades of implementation of such a silvicultural system is not sufficient to cause significant differences when compared to intensively managed stands. Furthermore, TLS-based high-resolution analyses of trunk and crown traits play a crucial role in the ability to better understand or predict tree growth responses to the current drivers of global change.


2020 ◽  
Author(s):  
Carlo Brandini ◽  
Stefano Taddei ◽  
Valentina Vannucchi ◽  
Michele Bendoni ◽  
Bartolomeo Doronzo ◽  
...  

<p>In this work we present the results obtained through a dynamic downscaling of the ERA5 reanalysis dataset (hindcast) of ECMWF, using high-resolution meteorological and wave models defined on unstructured computation grids along the Mediterranean coasts, with a particular focus on the North-Western Mediterranean area. Downscaling of the ERA5 meteorological data is obtained through the BOLAM and MOLOCH models (up to a resolution of 2.5 km) which force an unstructured WW3 model with a resolution of up to 500 m along the coast. Models were validated through available meteorological stations, wave buoy data and X-band wave radars, the latter for the purposes of wave spectra validation.</p><p>On the one hand, this allowed, by extracting the time series of some attack parameters of the waves along the coast, and according to the type of coast (rocky coasts, sandy coasts, coastal structures etc.), to compute the return periods and to characterize the impact of any individual storm. On the other hand, it is possible to highlight some trends observed in the last 30 years, during which recent research is showing an increasing evidence  of some changes in global circulation at regional to local scales. These changes also include effects of wind rotation, wave regimes, storm surges, wave-induced coastal currents and coastal morphodynamics. For example, in the North-Western Mediterranean extreme events belonging to cyclonic weather-types circulation with stronger S-SE components (like the storm of October 28-30th 2018 and many others), rather than events associated with perturbations of Atlantic origin and zonal circulation, are becoming more frequent. These long-term wind/wave climate trends can have consequences not only in the assessment of long-term risk due to main morphodynamic variations (ie. coastal erosion), but also in the short-term risk assessment.</p><p>This work was funded by the EU MAREGOT project (2017-2020) and ECMWF Special Project spitbran  “Evaluation of coastal climate trends in the Mediterranean area by means of high-resolution and multi-model downscaling of ERA5 reanalysis” (2018-2020).</p>


Sign in / Sign up

Export Citation Format

Share Document