Effect of In Situ Stress and Production-Induced Changes in Stress on Permeability of Naturally Fractured Reservoirs: ABSTRACT

AAPG Bulletin ◽  
1995 ◽  
Vol 79 ◽  
Author(s):  
Lawrence Teufel, John Lorenz
2021 ◽  
Author(s):  
Osman H. Hamid ◽  
Reza Sanee ◽  
Gbenga Folorunso Oluyemi

Abstract Fracture characterization, including permeability and deformation due to fluid flow, plays an essential role in hydrocarbon production during the development of naturally fractured reservoirs. The conventional way of characterization of the fracture is experimental, and modeling approaches. In this study, a conceptual model will be developed based on the structural style to study the fracture distributions, the influence of the fluid flow and geomechanics in the fracture conductivity, investigate the stress regime in the study area. Understanding the fracture properties will be conducted by studying the fracture properties from the core sample, image log interpretation. 3D geomechanical models will be constructed to evaluate the fluid flow properties; the models consider the crossflow coefficient and the compression coefficient. According to the model results, the fracture permeability decreases with increasing effective stress. The degree of decline is related to the crossflow coefficient and the compression coefficient. Most of these reservoirs are mainly composed of two porosity systems for fluid flow: the matrix component and fractures. Therefore, fluid flow path distribution within a naturally fractured reservoir depends on several features related to the rock matrix and fracture systems' properties. The main element that could help us identify the fluid flow paths is the critical stress analysis, which considers the in-situ stress regime model (in terms of magnitude and direction) and the spatial distributions of natural fractures fluid flow path. The critical stress requires calculating the normal and shear stress in each fracture plane to evaluate the conditions for critical and non-critical fractures. Based on this classification, some fractures can dominate the fluid-flow paths. To perform the critical stress analysis, fracture characterization and stress analysis were described using a 3D stress tensor model capturing the in-situ stress direction and magnitude applied to a discrete fracture model, identifying the fluid flow paths along the fractured reservoir. The results show that in-situ stress rotation observed in the breakouts or drilling induce tensile fractures (DITFs) interpreted from borehole images. The stress regime changes are probably attributed to some influence of deeply seated faults under the studied sequence. the flow of water-oil ratio through intact rock and fractures with/without imbibition was modeled based on the material balance based on preset conceptual reservoir parameters to investigate the water-oil ratio flow gradients


Sign in / Sign up

Export Citation Format

Share Document